• Nebyly nalezeny žádné výsledky

Companion of Ostrowski-Type Inequality based on 5-step quadratic kernel and

N/A
N/A
Protected

Academic year: 2022

Podíl "Companion of Ostrowski-Type Inequality based on 5-step quadratic kernel and"

Copied!
23
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

Companion of Ostrowski-Type Inequality based on 5-step quadratic kernel and

Applications

Ather QAYYUM

1

, Muhammad SHOAIB

2

, Ibrahima FAYE

1

1

Department of fundamental and applied sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh,

Malaysia. email: atherqayyum@gmail.com

2

Department of Mathematics, University of Hail, PO BOX 2440, Kingdom of Saudi Arabia.

May 9, 2015

Abstract

The purpose of this paper is to establish an improved version of companion of ostrowski’s type integral inequality. The inequalities are obtained by using newly developed special type of quadratic ker- nel having …ve steps. The introduction of this new Kernel is expected to improve approximation errors for various quadrature rules. Ap- plications for composite quadrature rule and Cumulative Distributive Functions are considered.

AMS Numbers: 26D15; 26D20; 26D99

Keywords: Ostrowski inequality, Numerical Integration, Composite quadra- ture rule, cumulative distributive function

1 Introduction

The …eld of inequalities appears in most of the domains of Mathematics. The importance of inequalities has increased during the past few decades and it is

(2)

now studied as a separate branch of Mathematics. Up till now, a large num- ber of research papers and books have been written on inequalities and their applications (see for instance [13]-[16]). In many practical problems, it is im- portant to bound one quantity by another quantity. The classical inequalities like Ostrowski are very useful for this purpose. Ostrowski type inequalities have immediate applications in numerical integration, optimization theory, statistics, and integral operator theory.

In 1938, Ostrowski [12] discovered the following useful integral inequality.

Theorem 1 Let f : [a; b]!R be continuous on [a; b] and di¤erentiable on (a; b); whose derivative f0 : (a; b)!R is bounded on (a; b); i.e.

kf0k1 = sup

t2[a;b]jf0(t)j<1 then

f(x) 1 b a

Zb a

f(t)dt 2 41

4 + x a+b2 b a

!23

5(b a)kf0k1: (1)

We mention another inequality called Grüss inequality [10] which is stated as the integral inequality that establishes a connection between the integral of the product of two functions and the product of the integrals, which is given below.

Theorem 2 Let f; g : [a; b] ! R be integrable functions such that ' f(x) and g(x) ; for some constants '; ; ; and x 2[a; b].

Then

1 b a

Zb a

f(x)g(x)dx 1 b a

Zb a

f(x)dx: 1 b a

Zb a

g(x)dx (2) 1

4( ')( ):

Dragomir and Wang [5] combined Ostrowski and Grüss inequality to give a new inequality which they named Ostrowski-Grüss type inequality.

(3)

Theorem 3 Letf: [a; b]!Rsatisfy the Lipschitz condition i.e.,jf(t) f(s)j Mjt sj: Then for all x2 a;a+b2 , we have

f(x) +f(a+b x) 2

1 b a

Zb a

f(t)dt 2 41

8 + 2 x 3a+b4 b a

!23

5(b a)M:

(3) In (3), the point x= 3a+b4 yields the following trapezoid type inequality.

f(3a+b4 ) +f(a+3b4 ) 2

1 b a

Zb a

f(t)dt b a

8 M: (4)

The constant 18 is sharp

In [3], Barnett et.al proved some Ostrowski and generalized trapezoid inequality. Dragomir [4], Liu [7] established some companions of ostrowski type integral inequalities. Alomari [1] proved the following inequality:

Let f: [a; b] ! R be a di¤erentiable mapping on (a; b). If f 0 2 L1[a; b]

and f 0(t) , for all t 2[a; b];then the inequality f(x) +f(a+b x)

2

1 b a

Zb a

f(t)dt 1

8(b a) ( ): (5) Recently, Liu [8] and Liu et.al [9] also proved some ostrowski type inequalities.

In all references mentioned, authors proved their results by using kernels with two or three steps.

Suppose, we take a 5-step kernel given below:

Lemma 1 Let us de…ne the kernel K(x; t) as:

K(x; t) = 8>

>>

><

>>

>>

:

t a; t 2 a;a+x2 ;

t 3a+b4 ; t2 a+x2 ; x ; t a+b2 ; t2(x; a+b x]; t a+3b4 ; t 2 a+b x;a+2b x2 ;

t b; t 2 a+2b x2 ; b ;

(6)

(4)

for all x2 a;a+b2 ; then the following identity holds:

1 b a

Zb a

P(x; t)f 0(t)dt (7)

= 1

4 f(x) +f(a+b x) +f(a+x

2 ) +f(a+ 2b x

2 ) 1

b a Zb

a

f(t)dt:

By using above identity, we can prove the following theorem.

Theorem 4 Let f : [a; b]!R be di¤erentiable on (a; b). Iff 0 2L1[a; b]

and f 0(t) , for allt 2[a; b]; then the inequality 1

4 f(x) +f(a+b x) +f(a+x

2 ) +f(a+ 2b x

2 ) 1

b a Zb

a

f(t)dt 1

16(b a) ( ): (8)

holds for all x2 a;a+b2 :

In this paper we introduce a new 5-step quadratic kernel that further generalize (8) and various previous results [6]-[2] and [1]-[9]. With the help of this special type 5-step quadratic kernel, one can obtain di¤erent type of useful and interesting results. We will describe new results by using Grüss inequality, Cauchy inequality and Diaz-Metcalf inequality. At the end, some obtained inequalities will then be applied for quadrature formula and for cumulative distributive function.

Before we establish our main results, we need to state the following lemma.

Lemma 2 Let f : [a; b]!R be such that f 0 is absolutely continuous on [a; b]: Let us de…ne the kernel P(x; t) as:

P(x; t) = 8>

>>

>>

<

>>

>

1

2(t a)2; t2 a;a+x2 ;

1

2 t 3a+b4 2; t 2 a+x2 ; x ;

1

2 t a+b2 2; t2(x; a+b x];

1 a+3b 2 a+2b x

(9)

(5)

for all x2 a;a+b2 ; the following identity holds:

1 b a

Zb a

P(x; t)f 00dt (10)

= 1

b a Zb

a

f(t)dt 1

4f f(x) +f(a+b x) +f(a+x

2 ) +f(a+ 2b x

2 )

+ x 5a+ 3b

8 (f 0(x) f 0(a+b x)) +1

2 x 3a+b

4 f 0 a+x

2 f 0 a+ 2b x

2 g

2 Main Results

Now we will present our results by imposing three di¤erent conditions on f00 and f 000.

Case. A: When f 00 2L1[a; b] :

Theorem 5 Let f : [a; b]!R be di¤erentiable on (a; b),f 0 is absolutely continuous on[a; b]and f 00(t) ,8t 2[a; b];then for allx2 a;a+b2 ; we have

j1

4f f(x) +f(a+b x) +f(a+x

2 ) +f(a+ 2b x

2 ) (11)

+ x 5a+ 3b

8 [f 0(x) f 0(a+b x)] + 1

2 x 3a+b 4 f 0 a+x

2 f 0 a+ 2b x

2 g f 0(b) f 0(a) (b a)2

"

1

24(x a)3 +1

3 x 3a+b 4

3 3

8 x a+b 2

3# 1 b a

Zb a

f(t)dtj (b a) (S );

(6)

and j1

4f f(x) +f(a+b x) +f(a+x

2 ) +f(a+ 2b x

2 ) (12)

+ x 5a+ 3b

8 [f 0(x) f 0(a+b x)] + 1

2 x 3a+b 4 f 0 a+x

2 f 0 a+ 2b x

2 g f 0(b) f 0(a) (b a)2

"

1

24(x a)3 +1

3 x 3a+b 4

3 3

8 x a+b 2

3# 1 b a

Zb a

f(t)dtj (b a) ( S);

where

S = f 0(b) f 0(a) b a and

= 1

96maxf a2 13ab+ 15ax 4b2+ 21bx 18x2

; 14a2+ 5ab 33ax b2 3bx+ 18x2 ; a2 + 11ab 9ax+ 8b2 27bx+ 18x2

; 10a2 7ab b2+ 27ax+ 9bx 18x2 g: proof From (9) and using

1 b a

Zb a

f 00(t)dt = f 0(b) f 0(a)

b a : (13)

and 1 b a

Zb a

P(x; t)dt= 1 b a

"

1

24(x a)3+1

3 x 3a+b 4

3 3

8 x a+b 2

3# (14)

(7)

we get 1 b a

Zb a

P(x; t)f00(t)dt 1 (b a)2

Zb a

P(x; t)dt Zb

a

f 00(t)dt (15)

= 1

b a Zb

a

f(t)dt 1

4f f(x) +f(a+b x) +f(a+x

2 ) +f(a+ 2b x

2 )

+ x 5a+ 3b

8 [f 0(x) f0(a+b x)] + 1

2 x 3a+b 4 f 0 a+x

2 f 0 a+ 2b x

2 g

f0(b) f0(a) (b a)2

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3! :

We suppose that Rn(x) = 1

b a Zb

a

P(x; t)f 00(t)dt 1 (b a)2

Zb a

P(x; t)dt Zb

a

f 00(t)dt: (16) If C 2R is an arbitrary constant, then we have

Rn(x) = 1 b a

Zb a

(f00(t) C) 2

4P(x; t) 1 b a

Zb a

P(x; s)ds 3

5dt: (17) Furthermore, we have

jRn(x)j 1

b amax

t2[a;b] P(x; t) 1 b a

Zb a

P(x; s)ds Zb a

jf00(t) Cjdt (18) Now

max P(x; t) 1 b a

Zb a

P(x; s)ds (19)

= max 8<

:

1 2

x a 2

2 (x)

b a ; 12 x 3a+b4 2 b a(x) ;

1

2 x a+b2 2 b a(x) ; 18 x a+b2 2 b a(x) ; b a(x) 9=

;:

(8)

where

(x) = 1

24(x a)3+1

3 x 3a+b 4

3 3

8 x a+b 2

3

: or

1

96maxf a2 13ab+ 15ax 4b2 + 21bx 18x2 ; (20) 14a2+ 5ab 33ax b2 3bx+ 18x2 ;

a2+ 11ab 9ax+ 8b2 27bx+ 18x2 ; 10a2 7ab b2+ 27ax+ 9bx 18x2 );

13a2+ 13a(b 3x) + 4b2 21bx+ 30x2 g= We also have

Zb a

jf 00(t) jdt = (S ) (b a): (21) Zb

a

jf 00(t) jdt = ( S) (b a): (22) Therefore, we can obtain (11) and (12) by using (13) to (22) taking C = and C = in (18), respectively.

Corollary 1 If we put x=a; in (11) and (12), we get 1

2(f(a) +f(b)) 1

6(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dt

(a) (b a) (S ); (23)

1

2(f(a) +f(b)) 1

6(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dt

(a) (b a) ( S): (24)

(9)

Corollary 2 If we put x= a+b2 ; in (11) and (12), we get j1

2f a+b

2 + 1

4 f(3a+b

4 ) +f(a+ 3b 4 ) +b a

32 f 0 a+ 3b

4 f 0 3a+b 4 1

96(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dtj a+b

2 (b a) (S ); (25)

j1

2f a+b

2 + 1

4 f(3a+b

4 ) +f(a+ 3b 4 ) + 1

32(b a) f 0 a+ 3b

4 f 0 3a+b 4 1

96(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dtj a+b

2 (b a) ( S): (26)

Corollary 3 If we put x= 3a+b4 ; in (11) and (12), we get j1

4 f 3a+b

4 +f a+ 3b

4 +f(7a+b

8 ) +f(a+ 7b

8 ) (27) b a

32 f 0 a+ 3b

4 f 0 3a+b 4 5

768(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dtj 3a+b

4 (b a) (S );

(10)

j1

4 f 3a+b

4 +f a+ 3b

4 +f(7a+b

8 ) +f(a+ 7b

8 ) (28) 1

32(b a) f 0 a+ 3b

4 f 0 3a+b 4

5

768(b a) (f 0(b) f 0(a)) 1

b a Zb a

f(t)dtj 3a+b

4 (b a) ( S):

Case. B: Whenf 002L2[a; b]

Theorem 6 Let f : [a;b]!R be an absolutely continuous function in(a; b) with f 002L2[a;b]. Then, we have

j1

4f f(x) +f(a+b x) +f(a+x

2 ) +f(a+ 2b x

2 ) + x 5a+ 3b

8 (29)

[f 0(x) f 0(a+b x)] + 1

2 x 3a+b

4 f 0 a+x

2 f 0 a+ 2b x

2 g

f 0(b) f 0(a) (b a)2

1

24(x a)3+13 x 3a+b4 3

3

8 x a+b2 3

! 1

b a Zb a

f(t)dtj p (f 00)

b a f 1

320 (x a)5+ 0:1 x 3a+b 4

5 33

320 x a+b 2

5

1 (b a)2

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3!2

g12 for all x2 a;a+b2 , where

(f 00) =kf 00k22

(f(b) f(a))2

b a =kf 00k22 S2(b a); (30) where S is de…ned in Theorem 4.

(11)

proof LetRn(x)is de…ned as in (16). If we choose C = b a1 Rb a

f 00(s)ds in (17) and use the Cauchy inequality and (37), then we get

jRn(x)j 1 b a

Zb a

f 00(t) 1 b a

Zb a

f 00(s)ds P(x; t) 1 b a

Zb a

P(x; s)ds dt

1 b a

2 64 Zb

a

0

@f 00(t) 1 b a

Zb a

f00(s)ds 1 A

2

dt 3 75

1 2

2 4 Zb

a

P(x; t) 1

b aP(x; s)ds

2

dt 3 5

1 2

p (f00) b a

2 64

3 10 3(x a)5 +101 x 3a+b4 5 0:1 x a+b2 5

1 (b a)2

h1

24(x a)3+ 13 x 3a+b4 3 38 x a+b2 3i2

3 75

1 2

:

Corollary 4 If we put x=a; in (29), we get 1

2(f(a) +f(b)) 1

6(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dt p (31)

10 3 (f 00) (b a)f3 (b a) 2:7g12 :

(12)

Corollary 5 If we put x= a+b2 ; in (29), we get j1

2f a+b

2 + 1

4 f(3a+b

4 ) +f(a+ 3b

4 ) (32)

+ 1

32(b a) f 0 a+ 3b

4 f 0 3a+b 4 1

96(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dtj p10 4 (f 00) (b a)f1:9 (b a) 1g12

Corollary 6 If we put x= 3a+b4 ; in (29), we get j1

4 f 3a+b

4 +f a+ 3b

4 +f(7a+b

8 ) +f(a+ 7b

8 ) (33) 1

32(b a) f 0 a+ 3b

4 f 0 3a+b 4 5

768(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dtj p10 4 (f 00) (b a)f(b a) 0:4g12 :

Case. C: Whenf 000 2L2[a; b]

Theorem 7 Let f : [a; b]!Rthree times di¤erentiable function in (a; b): If f 000 2L2[a; b] then for all x2 a;a+b2 ; we have

j1

4f f(x) +f(a+b x) +f(a+x

2 ) +f(a+ 2b x

2 ) (34)

+ x 5a+ 3b

8 [f 0(x) f 0(a+b x)] + 1

2 x 3a+b 4 f 0 a+x

2 f 0 a+ 2b x

2 g f 0(b) f 0(a) (b a)2

"

1 3 1 3a+b 3 3 a+b 3#

1 Zb

(13)

b a

kf 000k2f 1

320(x a)5+ 1

10 x 3a+b 4

5 33

320 x a+b 2

5

1 (b a)2

1

24(x a)3+1

3 x 3a+b 4

3 3

8 x a+b 2

3!2

g12

proof LetRn(x)be de…ned by (16), from (15) Rn(x) = b a1

Rb a

f(t)dt 14f f(x) +f(a+b x) +f(a+x2 ) +f(a+2b x2 ) + x 5a+3b8 [f 0(x) f 0(a+b x)] + 12 x 3a+b4 f 0 a+x2 f 0 a+2b x2 g

(35)

f 0(b) f 0(a) (b a)2 [ 1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3

]:

If we choose C = f 00 a+b2 ; (17) and use the Cauchy Inequality, then we get

jRn(x)j (36)

1 b a

Zb a

f 00(t) f 00 a+b

2 P(x; t) 1 b a

Zb a

P(x; s)ds dt

1 b a

2 4 Zb

a

f 00(t) f00 a+b 2

2

dt 3 5

1 2

2 64 Zb

a

0

@P(x; t) 1 b a

Zb a

P(x; s)ds 1 A

2

dt 3 75

1 2

:

We can use the Diaz-Metcalf inequality [11] or [17], to get Zb

a

f00(t) f 00 a+b 2

2

dt (b a)2

2 kf 000k22:

(14)

Zb a

0

@P(x; t) 1 b a

Zb a

P(x; s)ds 1 A

2

dt (37)

= Zb a

P(x; t)2dt 1 (b a)2

"

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3#2

= 3 10 3(x a)5 0:1 x a+b 2

5

+ 1

10 x 3a+b 4

5

1 (b a)2

"

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3#2

:

Therefore, using the above relations, we obtain (34).

Corollary 7 If we put x=a; in (34), we get 1

2(f(a) +f(b)) 1

6(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dt (38) (b a)3

kf 000k2

p10 3f3 (b a) 2:7g12

Corollary 8 If we put x= a+b2 ; in (34), we get j1

2f a+b

2 + 1

4 f(3a+b

4 ) +f(a+ 3b

4 ) (39)

+ 1

32(b a) f 0 a+ 3b

4 f 0 3a+b 4 1

96(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dtj (b a)3

kf 000k2

p10 3 3 (b a) 10 1

1 2

(15)

Corollary 9 If we put x= 3a+b4 ; in (34), we get j1

4 f 3a+b

4 +f a+ 3b

4 +f(7a+b

8 ) +f(a+ 7b

8 ) (40) b a

32 f 0 a+ 3b

4 f 0 3a+b 4 5

768(b a) (f 0(b) f 0(a)) 1 b a

Zb a

f(t)dtj (b a)3

kf 000k2

p10 4f(b a) 0:4g12

3 An application to Composite Quadrature Rules

Let In : a = x0 < x1 < x2 < :::: < xn 1 < xn = b be a division of the interval [a; b]; i 2 [xi; xi+1] (i= 0;1; ::::; n 1) ; a sequence of intermediate points hi =xi+1 xi (i= 0;1; :::::n 1). We have the following quadrature formula:

Consider the perturbed composite quadrature rules

A((f; ; In)) =

n 1

X

i=0

hi 2 66 66 4

1 4

f(3xi+x4 i+1) +f(xi+3x4i+1) +f(7xi+x8 i+1) +f(xi+7x8 i+1)

hi

32 f 0(3xi+x4 i+1) f 0(xi+3x4 i+1)

5hi

768(f 0(xi+1) f 0(xi))

3 77 77

5 (41)

Theorem 8 Let f : [a;b] ! R be such that f 0 is absolutely continuous function. If f 00 2 L1[a; b] and f 00(t) for all x 2 a;a+b2 ; then we have the following quadrature formula:

Zb a

f(t)dt=An((f; ; In)) +R1n(f; ; In); (42) Zb

a

f(t)dt=An((f; ; In)) +R2n(f; ; In); (43)

(16)

where Qn((f; ; In)) is de…ned above and remainder satis…es the estimation R1n(f; ; In) (S )

n 1

X

i=0

h2i 3xi+xi+1

4 ; (44)

and

R2n(f; ; In) ( S)

n 1

X

i=0

h2i 3xi+xi+1

4 ; (45)

for all i 2[xi; xi+1]; where hi :=xi+1 xi; (i= 1;2; ::::n 1):

proof Apply (27) and (28)on the interval[xi; xi+1], i 2[xi; xi+1]; where hi :=xi+1 xi (i= 1;2; ::::n 1); to get

R(f; ; In) =

xZi+1

xi

f(t)dt

n 1

X

i=0

hi 2 66 4

1 4

f(3xi+x4i+1) +f(xi+3x4 i+1) +f(7xi+x8i+1) +f(xi+7x8i+1)

hi

32 f 0(3xi+x8i+1) f 0(xi+3x8i+1)

5hi

768(f 0(xi+1) f0(xi))

3 77 5

(S )

n 1

X

i=0

h2i 3xi+xi+1

4 :

and

R(f; ; In) =

xZi+1

xi

f(t)dt

1 4

n 1

X

i=0

hi 2 66 4

1 4

f(3xi+x4i+1) +f(xi+3x4 i+1) +f(7xi+x8i+1) +f(xi+7x8 i+1)

hi

32 f 0(3xi+x8i+1) f0(xi+3x8i+1)

5hi

768(f 0(xi+1) f 0(xi))

3 77 5

( S)

n 1

X

i=0

h2i 3xi+xi+1

4 :

for (i= 1;2; ::::n 1)

(17)

Theorem 9 Letf : [a;b]!R be an absolutely continuous mapping on [a; b]

with f 002L2[a; b]. Then we have for all x2 a;a+b2 Zb

a

f(t)dt=An(f; In) +Rn(f; In); (46)

and remainder satis…es the estimation jR(f; In)j p

10 4 (f 00)

n 1

X

i=0

h2i fhi 0:4g12 (47) proof Applying (33) to the interval [xi; xi+1], then we get

j

xi+1

Z

xi

f(t)dt

1

4hif f 3xi+x4i+1 +f xi+3x4 i+1 +f(7xi+x8i+1) +f(xi+7x8 i+1)

hi

32 f 0 xi+7x8i+1 f 0 7xi+x8i+1 g 7685 (hi) (f 0(xi+1) f 0(xi))j p10 4 (f 00)h2i hi 4 10 1

1 2

for i= 0;1; ::::; n 1:

Now summing overifrom0ton 1;using the triangle inequality, we get (47).

Theorem 10 Let f : [a;b] !R be a three times continuously di¤erentiable function in (a; b) with f 000 2L2[a; b]. Then we have

Zb a

f(x)dx=A(f; In) +R(f; In); (48)

and the remainder satis…es the estimation jR(f; In)j 10 4kf 000k2

n 1

X

i=0

h6i f4hi 1:1g: (49)

(18)

proof Applying (40) to the interval [xi; xi+1], then we get

j

xi+1

Z

xi

f(t)dt hi 4

f(xi) +f 3xi+x4i+1 +f xi+3x4i+1 +f 7xi+x8 i+1 +f xi+7x8 i+1 + 1

32hi f0 xi+ 3xi+1

4 f 0 3xi+xi+1 4 + 5

768hiff 0(xi+1) f 0(xi)g j 10 4kf000k2h6i f4hi 1:1g; for i= 0;1; ::::; n 1:

Now summing overifrom0ton 1;using the triangle inequality, we get (49).

4 An Application to Cumulative Distribution Function

LetX be a random variable taking values in the …nite interval[a; b]with the probability density function f : [a; b] ! [0;1] and cumulative distributive function

F (x) = Pr (X x) = Z x

a

f(t)dt: (50)

F (b) = Pr (X b) = Zb

a

f(u)du= 1: (51)

Theorem 11 With the assumptions of Theorem 2.1, we have the following

(19)

inequality which holds jb E(X)

b a

1

4f F (x) +F (a+b x) +F(a+x

2 ) +F(a+ 2b x

2 )

+ x 5a+ 3b

8 [f(x) f (a+b x)] (52)

+1

2 x 3a+b

4 f a+x

2 f a+ 2b x

2 g

f (b) f (a) (b a)2

"

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3# j (b a) (S );

jb E(X) b a

1

4f F (x) +F (a+b x) +F(a+x

2 ) +F(a+ 2b x

2 )

+ x 5a+ 3b

8 [f(x) f (a+b x)] (53)

+1

2 x 3a+b

4 f a+x

2 f a+ 2b x

2 g

f (b) f (a) (b a)2

"

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3# j (b a) ( S);

for all x2 a;a+b2 . Where E(X) is the expectation of X.

proof In the proof of Theorem 2.1, letf =F and using the fact that E(X) =

Z b a

tdF(t) =b Z b

a

F(t)dt: (54)

Further details are left to the interested readers.

Corollary 10 Under the assumptions of Theorem 4.1, if we put x= 3a+b4 in

(20)

(52) and (53) then we get jb E(X)

b a

1

4f F(3a+b

4 ) +F(a+ 3b

4 ) +F(7a+b

8 ) +F(a+ 7b 8 ) b a

8 f a+ 3b

4 f 3a+b

4 g (55)

6:5 10 3(b a) (f(b) f (a))j (b a) (S );

jb E(X) b a

1

4f F(3a+b

4 ) +F(a+ 3b

4 ) +F(7a+b

8 ) +F(a+ 7b 8 ) b a

8 f a+ 3b

4 f 3a+b

4 g (56)

6:5 10 3(b a) (f(b) f (a))j (b a) ( ):

Theorem 12 With the assumptions of Theorem 2.9, we have the following inequality which holds

jb E(X) b a

1

4f F (x) +F (a+b x) +F(a+x

2 ) +F(a+ 2b x

2 )

+ x 5a+ 3b

8 (f (a+b x) f(x)) (57)

+1

2 x 3a+b

4 f a+ 2b x

2 f a+x

2 g

f (b) f (a) (b a)2

"

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3# j b a

kf 00k2f 1

320(x a)5+ 1

10 x 3a+b 4

5 33

320 x a+b 2

5

1 (b a)2

"

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3#2

g for all x2 a;a+b2 , where E(X) is the expectation of X.

(21)

Corollary 11 Under the assumptions of Theorem 4.3, if we put x= 3a+b4 in (57), then we get

jb E(X) b a

1

4f F(3a+b4 ) +F(a+3b4 )

+F(7a+b8 ) +F(a+7b8 ) (58) b a

8 f a+ 3b

4 f 3a+b

4 g

5

768 (b a) (f(b) f (a))j 10 4(b a)3

kf 00k2 (b a) 4:24 10 1

1 2

Theorem 13 With the assumptions of Theorem 4.3, we have the following inequality which holds

jb E(X) b a

1

4f F (x) +F(a+b x) +F(a+x

2 ) +F(a+ 2b x

2 )

+ x 5a+ 3b

8 [f(x) f (a+b x)] (59)

+1

2 x 3a+b

4 f a+x

2 f a+ 2b x

2 g

f (b) f (a) (b a)2

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3! j p (f 00)

b a f3:1 10 3(x a)5+ 1

10 x 3a+b 4

5

0:1 x a+b 2

5

1 (b a)2

"

1

24(x a)3+ 1

3 x 3a+b 4

3 3

8 x a+b 2

3#2

g12 proof Applying (29) and using the same conditions that we used in The- orem 4.1, we get the required inequality (59).

Corollary 12 Under the assumptions of Theorem 4.5, if we put x= 3a+b4 in (59), then we get

(22)

jb E(X) b a

1

4f F(3a+b

4 ) +F(a+ 3b

4 ) +F(7a+b

8 ) +F(a+ 7b 8 ) 1

8(b a) f a+ 3b

4 f 3a+b

4 g (60)

1:3 10 2(b a) (f(b) f (a))j

p10 4 (f 00) (b a) (b a) 4:24 10 1

1 2 :

References

[1] Alomari MW. A companion of Ostrowski’s inequality with applica- tions.Transylvanian Journal of Mathematics and Mechanics. 2011; 3:

9 - 14.

[2] Alomari MW. A companion of ostrowski’s inequality for mappings whose

…rst derivatives are bounded and applications numerical integration.

Kragujevac Journal of Mathematics. 2012; 36: 77 - 82.

[3] Barnett NS, Dragomir SS, Gomma I. A companion for the Ostrowski and the generalized trapezoid inequalities. Journal of Mathematical and Computer Modelling. 2009; 50: 179 - 187.

[4] Dragomir SS. Some companions of Ostrowski’s inequality for absolutely continuous functions and applications. Bulletin of the Korean Mathe- matical Society. 2005; 40(2): 213 - 230.

[5] Dragomir SS, Wang S. An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules. Computers and Mathematics with. Applications.1997; 33(11): 15 - 20.

[6] Guessab A, Schmeisser G. Sharp integral inequalities of the Hermite- Hadamard type. Journal of Approximation.Theory. 2002; 115( 2): 260 - 288.

[7] Liu Z. Some companions of an Ostrowski type inequality and applica-

(23)

[8] Liu W. New Bounds for the Companion of Ostrowski’s Inequality and Applications. Filomat. 2014; 28: 167 - 178.

[9] Liu W, Zhu Y, Park J. Some companions of perturbed Ostrowski-type inequalities based on the quadratic kernel function with three sections and applications. Journal of Inequalities and Applications. 2013: 226.

[10] Mitrinvi´c DS, Pecari´c JE, Fink AM. Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht, 1993.

[11] Mitrinovi´c DS, Pecari´c JE, FinkAM. Inequalities involving functions and their integrals and derivatives.Mathematics and its Applications. (East European Series), Kluwer Acadamic Publications Dordrecht.1991; 53.

[12] Ostrowski A. Über die Absolutabweichung einer di¤erentienbaren Funk- tionen von ihren Integralimittelwert. Comment. Math. Hel. 1938; 10:

226 - 227.

[13] Qayyum A, Hussain S. A new generalized Ostrowski Grüss type in- equality and applications. Applied Mathematics Letters. 2012; 25: 1875 - 1880.

[14] Qayyum A, Shoaib M, Matouk AE, Latif MA. On New Generalized Ostrowski Type Integral inequalities. Abstract and Applied Analysis.

2014; 2014: 1 - 8.

[15] Qayyum A, Shoaib M, Latif MA. A generalized inequality of ostrowski type for twice di¤erentiable bounded mappings and applications. Ap- plied Mathematical Sciences. 2014; 8(38): 1889 - 1901.

[16] Qayyum A, Faye I, Shoaib M, Latif MA. A Generalization of Ostrowski type inequality for mappings whose second derivatives belong toL1(a; b) and applications. International Journal of Pure and Applied Mathemat- ics. 2015; 98(2): 169 - 180.

[17] UJevi´c N. New bounds for the …rst inequality of Ostrowski-Grüss type and applications. Computers and Mathematics with Applications. 2003;

46: 421 - 427.

Odkazy

Související dokumenty

The routine glp_set_col_bnds sets (changes) the type and bounds of j-th column (structural variable) of the specified problem object.. The parameters type, lb, and ub specify the

The supervisor shall, in accordance with the procedure referred to in Article 6(1), assess the evaluation documents, propose the final evaluation and submit them to the

A brief review of existing quadrature rules for the triangle is given, and the method for the determination of high degree efficient symmetrical rules for the triangle is

The inferences (and so inferential roles) generated for compounds formed by applying vocabulary that is logical in this special, seman- tically expressive sense are not restricted

The relationship between heat kernel upper bounds for jump processes and exit time estimates is explored in [4] and the relationship between parabolic Harnack inequality and heat

In [30], bounds depending on the degree and plurigenera of the foliation and the geometric genera of the leaves were proved for foliations of general type.. The problem was extended

Roumeliotis, On Ostrowski type inequality for mappings whose second derivatives belong to Ll,(a,b and applications, Preprint, RGMIA Research Report Collection, 1(1) (1998), 41-50.

Let us note that the known bounds 1.19–1.21 are the best possible in the framework of an approach based on analysis of the variance, usage of exponential functions, and of an