• Nebyly nalezeny žádné výsledky

JJ II

N/A
N/A
Protected

Academic year: 2022

Podíl "JJ II"

Copied!
24
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

volume 6, issue 3, article 68, 2005.

Received 20 October, 2004;

accepted 02 June, 2005.

Communicated by:A. Sofo

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

NEW SUBCLASSES OF MEROMORPHIC p−VALENT FUNCTIONS

B.A. FRASIN AND G. MURUGUSUNDARAMOORTHY

Department of Mathematics Al al-Bayt University P.O. Box: 130095 Mafraq, Jordan.

EMail:bafrasin@yahoo.com

Vellore Institute of Technology, Deemed University, Vellore, TN-632 014 India.

EMail:gmsmoorthy@yahoo.com

c

2000Victoria University ISSN (electronic): 1443-5756 202-04

(2)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of24

Abstract

In this paper, we introduce two subclassesΩp(α)andΛp(α)of meromorphic p-valent functions in the punctured diskD = {z : 0 < |z| < 1}.Coefficient inequalities, distortion theorems, the radii of starlikeness and convexity, closure theorems and Hadamard product ( or convolution) of functions belonging to these classes are obtained.

2000 Mathematics Subject Classification:30C45, 30C50.

Key words: Meromorphicp−valent functions, Meromorphically starlike and convex functions.

Contents

1 Introduction and Definitions . . . 3

2 Coefficient Inequalities. . . 4

3 Distortion Theorems. . . 7

4 Radii of Starlikeness and Convexity . . . 11

5 Closure Theorems. . . 14

6 Convolution Properties. . . 19 References

(3)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

1. Introduction and Definitions

LetΣp denote the class of functions of the form:

(1.1) f(z) = 1

zp +

X

n=1

ap+n−1zp+n−1 (p∈N),

which are analytic andp-valent in the punctured unit diskD = {z : 0 <|z| <

1}.A functionf ∈Σpis said to be in the classΩp(α)of meromorphicp-valently starlike functions of orderαinDif and only if

(1.2) Re

−zf0(z) f(z)

> α (z ∈ D; 0≤α < p; p∈N).

Furthermore, a functionf ∈Σpis said to be in the classΛp(α)of meromorphic p-valently convex functions of orderαinDif and only if

(1.3) Re

−1− zf00(z) f0(z)

> α (z ∈ D; 0≤α < p; p∈N).

The classesΩp(α), Λp(α)and various other subclasses ofΣphave been stud- ied rather extensively by Aouf et.al. [1] – [3], Joshi and Srivastava [4], Kulkarni et. al. [5], Mogra [6], Owa et. al. [7], Srivastava and Owa [8], Uralegaddi and Somantha [9], and Yang [10].

In the next section we derive sufficient conditions forf(z)to be in the classes Ωp(α)andΛp(α),which are obtained by using coefficient inequalities.

(4)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of24

2. Coefficient Inequalities

Theorem 2.1. Let σn(p, k, α) = (p+n+k −1) +|p+n+ 2α−k−1|. If f(z)∈Σp satisfies

(2.1)

X

n=1

σn(p, k, α)|ap+n−1|<2(p−α)

for someα(0≤α < p)and somek(k ≥p),thenf(z)∈Ωp(α).

Proof. Suppose that (2.1) holds true for α (0 ≤ α < p)and k (k ≥ p). For f(z)∈Σp,it suffices to show that

zf0(z) f(z) +k

zf0(z)

f(z) + (2α−k)

<1 (z ∈ D).

We note that

zf0(z) f(z) +k

zf0(z)

f(z) + (2α−k)

=

k−p+P

n=1(p+n+k−1)ap+n−1z2p+n−1 2α−k−p+P

n=1(p+n+ 2α−k−1)ap+n−1z2p+n−1

≤ k−p+P

n=1(p+n+k−1)|ap+n−1| |z|2p+n−1 p+k−2α−P

n=1|p+n+ 2α−k−1| |ap+n−1| |z|2p+n−1

(5)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

< k−p+P

n=1(p+n+k−1)|ap+n−1| p+k−2α−P

n=1|p+n+ 2α−k−1| |ap+n−1|. The last expression is bounded above by 1 if

k−p+

X

n=1

(p+n+k−1)|ap+n−1|< p+k−2α−

X

n=1

|p+n+ 2α−k−1| |ap+n−1| which is equivalent to our condition (2.1) of the theorem.

Example 2.1. The functionf(z)given by

(2.2) f(z) = 1 zp +

X

n=1

4(p−α)

n(n+ 1)σn(p, k, α)zp+n−1 (p∈N) belongs to the classp(α).

Sincef(z)∈Ωp(α)if and only ifzf0(z)∈Λp(α),we can prove:

Theorem 2.2. Iff(z)∈Σp satisfies (2.3)

X

n=1

(p+n−1)σn(p, k, α)|ap+n−1|<2(p−α) for someα(0≤α < p)and somek(k ≥p),thenf(z)∈Λp(α).

Example 2.2. The functionf(z)given by

(2.4) f(z) = 1 zp +

X

n=1

4(p−α)

n(n+ 1)(p+n−1)σn(p, k, α)zp+n−1 belongs to the classΛp(α).

(6)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of24

In view of Theorem2.1and Theorem2.2, we now define the subclasses:

p(α)⊂Ωp(α)andΛp(α)⊂Λp(α),

which consist of functions f(z)∈ Σp satisfying the conditions (2.1) and (2.3), respectively.

Letting p = 1, 1 ≤ k ≤ n+ 2α, where 0 ≤ α < 1 in Theorem2.1 and Theorem2.2, we have the following corollaries:

Corollary 2.3. Iff(z)∈Σ1satisfies

X

n=1

(n+α)|an|<1−α

thenf(z) ∈Ω1(α) = Σ(α)the class of meromorphically starlike functions of orderαinD.

Corollary 2.4. Iff(z)∈Σ1satisfies

X

n=1

n(n+α)|an|<1−α

thenf(z)∈Λ1(α) = ΣK(α)the class of meromorphically convex functions of orderαinD.

(7)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

3. Distortion Theorems

A distortion property for functions in the classΩp(α)is contained in

Theorem 3.1. If the function f(z) defined by (1.1) is in the classp(α), then for0<|z|=r <1,we have

1

rp − 2(p−α)

p+k+|p+ 2α−k|rp ≤ |f(z)|

(3.1)

≤ 1

rp + 2(p−α)

p+k+|p+ 2α−k|rp, and

p

rp+1− 2p(p−α)

p+k+|p+ 2α−k|rp−1 (3.2)

≤ |f0(z)|

≤ p

rp+1 + 2p(p−α)

p+k+|p+ 2α−k|rp−1.

The bounds in (3.1) and (3.2) are attained for the functionsf(z)given by

(3.3) f(z) = 1

zp + 2(p−α)

p+k+|p+ 2α−k|zp (p∈N; z ∈ D).

Proof. Sincef ∈Ωp(α),from the inequality (2.1), we have (3.4)

X

n=1

|ap+n−1| ≤ 2(p−α)

p+k+|p+ 2α−k|.

(8)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of24

Thus, for0<|z|=r <1,and making use of (3.4) we have

|f(z)| ≤

1 zp

+

X

n=1

|ap+n−1| |z|p+n−1 (3.5)

≤ 1 rp +rp

X

n=1

|ap+n−1|

≤ 1

rp + 2(p−α)

p+k+|p+ 2α−k|rp and

|f(z)| ≥

1 zp

X

n=1

|ap+n−1| |z|p+n−1 (3.6)

≥ 1 rp −rp

X

n=1

|ap+n−1|

≥ 1

rp − 2(p−α)

p+k+|p+ 2α−k|rp. We also observe that

(3.7) p+k+|p+ 2α−k|

p

X

n=1

(p+n−1)|ap+n−1| ≤2(p−α)

(9)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

which readily yields the following distortion inequalities:

|f0(z)| ≤ p

|z|p+1 +

X

n=1

(p+n−1)|ap+n−1| |z|p+n−2 (3.8)

≤ p

rp+1 +rp−1

X

n=1

(p+n−1)|ap+n−1|

≤ p

rp+1 + 2p(p−α)

p+k+|p+ 2α−k|rp−1 and

|f0(z)| ≥ p

|z|p+1

X

n=1

(p+n−1)|ap+n−1| |z|p+n−2 (3.9)

≥ p

rp+1 −rp−1

X

n=1

(p+n−1)|ap+n−1|

≥ p

rp+1 − 2p(p−α)

p+k+|p+ 2α−k|rp−1. This completes the proof of Theorem3.1.

Similarly, for functionf(z)∈Λp(α),and making use of (2.3), we can prove Theorem 3.2. If the function f(z)defined by (1.1) is in the classΛp(α), then

(10)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of24

for0<|z|=r <1,we have 1

rp − 2(p−α)

p[p+k+|p+ 2α−k|]rp ≤ |f(z)|

(3.10)

≤ 1

rp + 2(p−α)

p[p+k+|p+ 2α−k|]rp, and

p

rp+1− 2(p−α)

p+k+|p+ 2α−k|rp−1 (3.11)

≤ |f0(z)|

≤ p

rp+1 + 2(p−α)

p+k+|p+ 2α−k|rp−1.

The bounds in (3.10) and (3.11) are attained for the functionsf(z)given by

(3.12) g(z) = 1

zp + 2(p−α)

p[p+k−1 +|p+ 2α−k|]zp (p∈N; z ∈ D).

(11)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

4. Radii of Starlikeness and Convexity

The radii of starlikeness and convexity for the classesΩp(α)is given by

Theorem 4.1. If the functionf(z)be defined by (1.1) is in the classp(α),then f(z)is meromorphicallyp-valently starlike of orderδ(0 ≤δ < p)in|z| < r1, where

(4.1) r1 = inf

n≥1

(p−δ)σn(p, k, α) 2(3p+n+ 1−δ)(p−α)

2p+n−11

(p∈N).

Furthermore,f(z) is meromorphicallyp-valently convex of orderδ(0≤δ < p) in|z|< r2,where

(4.2) r2 = inf

n≥1

p(p−δ)σn(p, k, α)

2[(p+n−1)[3p+n−1−δ](p−α)

2p+n−11

(p∈N).

The results (4.1) and (4.2) are sharp for the functionf(z)given by

(4.3) f(z) = 1

zp + 2(p−α)

σn(p, k, α)zp+n−1 (p∈N; z ∈ D).

Proof. It suffices to prove that

(4.4)

zf0(z) f(z) +p

≤p−δ,

(12)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of24

for|z| ≤r1. We have

zf0(z) f(z) +p

=

P

n=1(2p+n−1)ap+n−1zp+n−1

1

zp +P

n=1ap+n−1zp+n−1 (4.5)

≤ P

n=1(2p+n−1)|ap+n−1| |z|2p+n−1 1−P

n=1|ap+n−1| |z|2p+n−1 . Hence (4.5) holds true if

(4.6)

X

n=1

(2p+n−1)|ap+n−1| |z|2p+n−1

≤(p−δ) 1−

X

n=1

|ap+n−1| |z|2p+n−1

! ,

or (4.7)

X

n=1

3p+n−1−δ

(p−δ) |ap+n−1| |z|2p+n−1 ≤1, with the aid of (2.1), (4.7) is true if

(4.8) 3p+n−1−δ

(p−δ) |z|2p+n−1 ≤ σn(p, k, α)

2(p−α) (n ≥1).

Solving (4.8) for|z|, we obtain

(p−δ)σ (p, k, α) 1

(13)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

In precisely the same manner, we can find the radius of convexity asserted by (4.2), by requiring that

(4.10)

zf00(z)

f0(z) +p+ 1

≤p−δ, in view of (2.1). This completes the proof of Theorem4.1.

Similarly, we can get the radii of starlikeness and convexity for functions in the classΛp(α).

Theorem 4.2. If the functionf(z)be defined by (1.1) is in the classΛp(α),then f(z)is meromorphicallyp-valently starlike of orderδ(0 ≤δ < p)in|z| < r3, where

(4.11) r3 = inf

n≥1

(p−δ)(p+n−1)σn(p, k, α) 2(3p+n+ 1−δ)(p−α)

2p+n−11

(p∈N).

Furthermore,f(z) is meromorphicallyp-valently convex of orderδ(0≤δ < p) in|z|< r4,where

(4.12) r4 = inf

n≥1

p(p−δ)(p+n−1)σn(p, k, α) 2[(p+n−1)[3p+n−1−δ](p−α)

2p+n−11

(p∈N).

The results (4.11) and (4.12) are sharp for the functiong(z)given by

(4.13) g(z) = 1

zp + 2(p−α)

(p+n−1)σn(p, k, α)zp+n−1 (p∈N; z ∈ D).

(14)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of24

5. Closure Theorems

Let the functionsfj(z)be defined, forj ∈ {1,2, . . . , m},by (5.1) fj(z) = 1

zp +

X

n=1

ap+n−1,jzp+n−1, (z ∈ D).

Now, we shall prove the following results for the closure of functions in the classesΩp(α)andΛp(α).

Theorem 5.1. Let the functionsfj(z), j ∈ {1,2, . . . , m}, defined by (5.1) be in the classp(α).Then the functionh(z)∈Ωp(α)where

(5.2) h(z) =

m

X

j=1

bj fj(z), bj ≥0 and

m

X

j=1

bj = 1).

Proof. From (5.2), we can writeh(z)as

(5.3) h(z) = 1

zp +

X

n=1

cp+n−1zp+n−1,

where

(5.4) cp+n−1 =

m

X

j=1

bjap+n−1,j, j ∈ {1,2, . . . , m}.

(15)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

Since fj(z)∈Ωp(α),(j ∈ {1,2, . . . , m}), from (2.1) , we have

X

n=1

σn(p, k, α) 2(p−α)

m X

j=1

bj|ap+n−1,j|

!

=

m

X

j=1

bj

X

n=1

σn(p, k, α)

2(p−α) |ap+n−1,j|

!

m

X

j=1

bj = 1,

which shows that h(z)∈Ωp(α).This completes the proof of Theorem5.1.

Using the same technique as in the proof of Theorem5.1, we have

Theorem 5.2. Let the functionsfj(z), j ∈ {1,2, . . . , m}, defined by (5.1) be in the classΛp(α).Then the functionh(z)∈Λp(α),whereh(z)defined by (5.2).

Theorem 5.3. Let

(5.5) fp−1(z) = 1

zp (z ∈ D) and

(5.6) fp+n−1(z) = 1

zp + 2(p−α)

σn(p, k, α)zp+n−1,

where n ∈ N0 = N∪ {0}; z ∈ D.Thenf(z) ∈ Ωp(α)if and only if it can be expressed in the form

(5.7) f(z) =

X

n=0

λp+n−1fp+n−1(z)

(16)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of24

whereλp+n−1 ≥0,(n ∈N0)andP

n=0λp+n−1 = 1.

Proof. From (5.5), (5.6) and (5.7), it is easily seen that

f(z) =

X

n=0

λp+n−1fn+p−1(z) (5.8)

= 1

zp + 2(p−α)

σn(p, k, α)λp+n−1zp+n−1. Since

X

n=1

σn(p, k, α)

2(p−α) . 2(p−α)

σn(p, k, α)λp+n−1 =

X

n=1

λp+n−1 = 1−λp−1 ≤1, it follows from Theorem2.1that the functionf(z)given by (5.6) is in the class Ωp(α).

Conversely, let us suppose thatf(z)∈Ωp(α).Since

|ap+n−1| ≤ 2(p−α)

σn(p, k, α) (n ≥1), setting

λp+n−1 = σn(p, k, α)

2(p−α) |ap+n−1|, (n ≥1)

and

(17)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

it follows that

f(z) =

X

n=0

λp+n−1fp+n−1(z).

This completes the proof of the theorem.

Similarly, we can prove the same result for the classΛp(α).

Theorem 5.4. Let

(5.9) gp−1(z) = 1

zp (z ∈ D) and

(5.10) gp+n−1(z) = 1

zp + 2(p−α)

(p+n−1)σn(p, k, α)zp+n−1

wheren ∈N0 andz ∈ D.Theng(z)∈Λp(α)if and only if it can be expressed in the form

(5.11) g(z) =

X

n=0

λp+n−1gp+n−1(z)

whereλp+n−1 ≥0,(n ∈N0)andP

n=0λp+n−1 = 1.

Next, we state a theorem which exhibits the fact that the classesΩ(α)and Λp(α)are closed under convex linear combinations. The proof is fairly straight- forward so we omit it.

(18)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of24

Theorem 5.5. Suppose thatf(z)andg(z)are in the class(α)(or in Λp(α)).

Then the functionh(z)defined by

(5.12) h(z) = tf(z) + (1−t)g(z), (0≤t≤1) is also in the class(α)(or in Λp(α)).

(19)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

6. Convolution Properties

For functions

(6.1) fj(z) = 1 zp +

X

n=1

ap+n−1,jzp+n−1, (j = 1,2)

belonging to the classΣp,we denote by(f1∗f2)(z)the Hadamard product (or convolution) of the functionsf1(z)andf2(z),that is,

(6.2) (f1∗f2)(z) = 1 zp +

X

n=1

ap+n−1,1ap+n−1,2zp+n−1.

Finally, we prove the following.

Theorem 6.1. Let each of the functionsfj(z) (j = 1,2)defined by (6.1) be in the class(α).Then(f1∗f2)(z)∈Ω(η),where

1

2(k+ 1−p−n)≤η= p([p+k+|p+ 2α−k|]2−4(p−α)2) 4(p−α)2+ [p+k+|p+ 2α−k|]2 , (6.3)

(k ≥p; p, n∈N).

The result is sharp.

Proof. Forfj(z)∈Ω(α) (j = 1,2),we need to find the largestηsuch that (6.4)

X

n=1

σn(p, k, η)

2(p−η) |ap+n−1,1| |ap+n−1,2| ≤1.

(20)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of24

From (2.1), we have (6.5)

X

n=1

σn(p, k, α)

2(p−α) |ap+n−1,1| ≤1 and

(6.6)

X

n=1

σn(p, k, α)

2(p−α) |ap+n−1,2| ≤1.

Therefore, by the Cauchy-Schwarz inequality, we have (6.7)

X

n=1

σn(p, k, α) 2(p−α)

q

|ap+n−1,1| |ap+n−1,2| ≤1.

Thus it is sufficient to show that (6.8) σn(p, k, η)

2(p−η) |ap+n−1,1| |ap+n−1,2|

≤ σn(p, k, α) 2(p−α)

q

|ap+n−1,1| |ap+n−1,2|, (n ≥1) that is, that

(6.9)

q

|ap+n−1,1| |ap+n−1,2| ≤ (p−η)σn(p, k, α)

(p−α)σn(p, k, η), (n≥1).

From (6.7), we have

2(p−α)

(21)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

Consequently, we need only to prove that

(6.10) 2(p−α)

σn(p, k, α) ≤ (p−η)σn(p, k, α)

(p−α)σn(p, k, η), (n≥1).

Letη ≥ 12 (k+ 1−p−n),wherek ≥ pandp, n ∈N.It follows from (6.10) that

(6.11) η ≤ p[σn(p, k, α)]2−4(p−α)2(p+n−1)

4(p−α)2+ [σn(p, k, α)]2 = Ψ(n).

SinceΨ(k)is an increasing function of n(n ≥ 1),lettingn = 1 in (6.11), we obtain

(6.12) η ≤Ψ(1) = p([p+k+|p+ 2α−k|]2−4(p−α)2) 4(p−α)2+ [p+k+|p+ 2α−k|]2 , which proves the main assertion of Theorem6.1.

Finally, by taking the functions (6.13) fj(z) = 1

zp + 2(p−α)

σn(p, k, α)zp+n−1, (j = 1,2) we can see the result is sharp.

Similarly, and as the above proof, we can prove the following.

(22)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of24

Theorem 6.2. Let each of the functions fj(z) (j = 1,2)defined by (6.1) be in the classΛp(α).Then(f1∗f2)(z)∈Λp(ξ),where

1

2(k+ 1−p−n)≤ξ= p(p[p+k+|p+ 2α−k|]2−4(p−α)2) 4(p−α)2+p[p+k+|p+ 2α−k|]2 , (6.14)

(k ≥p; p, n∈N).

The result is sharp for the functions

(6.15) fj(z) = 1

zp + 2(p−α)

(p+n−1)σn(p, k, α)zp+n−1, (j = 1,2).

(23)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of24

J. Ineq. Pure and Appl. Math. 6(3) Art. 68, 2005

http://jipam.vu.edu.au

References

[1] M.K. AOUF, New criteria for multivalent meromorphic starlike functions of order alpha, Proc. Japan. Acad. Ser. A. Math. Sci., 69 (1993), 66–70.

[2] M.K. AOUFANDH.M. HOSSEN, New criteria for meromorphicp-valent starlike functions, Tsukuba J. Math., 17 (1993) 481–486.

[3] M.K. AOUF AND H.M. SRIVASTAVA, A new criteria for meromorphic p-valent convex functions of order alpha, Math. Sci. Res. Hot-line, 1(8) (1997), 7–12.

[4] S.B. JOSHI AND H.M. SRIVASTAVA, A certain family of meromorphi- cally multivalent functions, Computers Math. Appl., 38 (1999), 201–211.

[5] S.R. KUKARNI, U.H. NAIK AND H.M. SRIVASTAVA, A certain class of meromorphicallyp-valent quasi-convex functions, Pan Amer. Math. J., 8(1) (1998), 57–64.

[6] M.L. MOGRA, Meromorphic multivalent functions with positive coeffi- cients I and II, Math. Japon., 35 (1990), 1–11 and 1089–1098.

[7] S. OWA, H.E. DARWISH AND M.K. AOUF, Meromorphic multivalent functions with positive and fixed second coefficients, Math. Japon., 46 (1997), 231–236.

[8] H.M. SRIVASTAVA AND S. OWA (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore/New Jersey/London/Hong Kong, (1992).

(24)

New Subclasses of Meromorphicp−Valent

Functions

B.A. Frasin and G. Murugusundaramoorthy

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of24

[9] B.A. URALEGADDI AND C. SOMANATHA, Certain classes of mero- morphic multivalent functions, Tamkang J. Math., 23 (1992), 223–231.

[10] D.G. YANG, On new subclasses of meromorphic p-valent functions, J.

Math. Res. Exposition, 15 (1995) 7–13.

Odkazy

Související dokumenty

The great variety of different possible uniqueness theorems has not been exhausted and the section presents rather a few examples for constructing such theorems

Next, new classes of rational functions: parabolic Collet–Eckmann and topological parabolic Collet–Eckmann are introduced and mean porosity of Julia sets for functions in these

Furthermore, we give modified Hadamard product of several functions and some distortion theorems for fractional calculus of analytic functions with negative and miss- ing

These spaces on the one- parameter space R n associated with para-accretive function were introduced in [12], and on the spaces of test functions and distributions on product spaces

Liebscher, Random sets and invariants for (type II ) continuous tensor product systems of Hilbert spaces, arXiv:math.PR/0306365v1. Link, Representation theorems of the de Finetti

Abstract. We prove a q-analogue of the row and column removal theorems for homomorphisms between Specht modules proved by Fayers and the first author [16]. These results can

The main purpose of this paper is to establish new inequalities like those given in Theorems A, B and C, but now for the classes of m-convex functions (Section 2) and (α,

The second purpose of this paper is to construct cobordism invariants for the four cobor- dism groups of Morse functions on surfaces considered above by using cohomology classes of