• Nebyly nalezeny žádné výsledky

Commentationes Mathematicae Universitatis Carolinae

N/A
N/A
Protected

Academic year: 2022

Podíl "Commentationes Mathematicae Universitatis Carolinae"

Copied!
9
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

Commentationes Mathematicae Universitatis Carolinae

Stanislav Jendroľ; Zdeněk Ryjáček

3-polytopes of constant tolerance of edges

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 4, 843--850 Persistent URL:http://dml.cz/dmlcz/106124

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain theseTerms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the projectDML-CZ: The Czech Digital Mathematics Libraryhttp://project.dml.cz

(2)

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 22,4 (1981)

3-POLYTOPES OF CONSTANT TOLERANCE OF EDGES Stanislav JENDROL' Zdeněk RYJÁČEK

Abstract: We prove necessary and sufficient c o ndi t i ­ ons for the existence of planar graphs (and e spe c i a l l y for 3-polytopal graphs) of constant tolerance of edges, i . e . graphs each edge of which has the same absolute value of the difference of valencies of i t s v e r t i c e s .

Ke.v words: 3-polytope, planar graph, plane graph, degree s e t .

Classification: 05C10 52A25

1» Introduction. By the tolerance of an edge AB of a 3-polytope P i s meant the absolute value ox' the difference of valencies of the vertices A, B. All 3-polytopes of regu­

lar graphs have obviously constant tolerances of edges. In the present note, 3-polytopes of constant tolerance of ed­

ges, i . e . the 3-polytopes each edge of which has the same tolerance, w i l l be investigated and necessary and sufficient conditions for their existence will be given.

A theorem of Steinitz t33 states that a graph i s the graph of a 3-polytope i f and only i f it i s planar and 3-con- nected. Defining analogously the notion of a graph of con­

stant tolerance of edges (briefly ct-graph in the sequel),

(3)

one can e a s i l y observe that the study of the e x i s t e n c e of planar 3-connected ct-grapha i a 3 u f f i c i e n t .

Let G * (V,B) be a connected ct-graph with the t o l e r a n - ce t , t > 0 . Then the f o l l o w i n g aa3ertion3 can be e a s i l y p r o - ved:

i ) I f t a 0 , then G i e r e g u l a r . i i ) I f t > 0 , then G ia b i p a r t i t e .

i i i ) Let B Q W ~{m; m -» d e g ^ v ) f o r some v e V j be the degree s e t of G; k = I.DQ(V)|its c a r d i n a l i t y .

Denote by < / * cf(G) the minimum degree of G. Then (1) %(V) * { n ; n » cf + i t , i * 0 , l , . . . , k - l $

Conversely, the question a r i s e s whether, g i v e n i n t e g e r s t > 0 , cT^ 1, k > l , there e x i e t 9 a ct-grapirG with degree s e t of the type ( l ) . This problem was solved by Acharya and Var- tak Lll without as9umption of the p l a n a r i t y of G. Our aim l a t o study i t for the case of planar graphs and e s p e c i a l l y for graphs of 3 - p o l y t o p e s .

2. Let us formulate now the main r e s u l t of t h i s paper.

Theorem 1. Let be g i v e n i n t e g e r s t > 0 , cf > 1, k>;l*

Planar ct-graph with the degree aet of the type ( l ) e x i s t s only i n the following c a s e s :

i ) t » 0 , 1 &<?£ 5, k » 1 i i ) t 2 : l , l ^ c T ^ 2 , k > 2 i i i ) t a 1 , </* 3 , k2T2

iv) t * 2, <fn 3, k^2.

Moreover, in each of these cases there exists also a oT-con- nected ct-graph with the same degree set.

844 -

(4)

From Theorem 1 one can e a s i l y obtain by S t e i n i t z t h e - orem t £1 the f o l l o w i n g

Theorem 2 , Let be given integera t £ 0 , cf z 1 , k . > l . 3-polytope of constant tolerance of edges with the degree s e t of the type ( l ) e x i s t s only i n the f o l l o w i n g c a s e s :

i ) t « 0 , 3 6 cf* 5, k « 1 i i ) l = f r t ^ 2 , </=* 3 , k > 3 .

3. Proof of Theorem |> We shall firat prove that the above conditions are sufficient*

Caae i ) : Consider graphs of 1^, K-j, tetrahedron, octa- hedron and icosahedron*

Case ii): Let be given integers t2"l, / ? 1,- k U 2 . Consider a plane tree (Graphtheoretical terms being used in the senae of t2l») with the following properties:

a) its degree set is -tlju^n; n *<f + it, i « l,...,k~i];

b) each of ita 1-valent vertices la adjacent to a (of+ t)-valent vertex;

c) tolerance of each Its edge non-incident with any 1*»

valent vertex is equal to t.

For any fixed t,^,k one can easily verify the existen- ce of such a tree; let us choose arbitrarily one of them and denote it by T^ -k« Further, denote by v^ * v^(T^ ^ k) the number of Its 1-valent vertices*

Now, for t z l , cf« 1, *ZZ the graph Tt x k and for t.>if

t / - 2, k > 2 the graph obtained by suitable Identifying of the 1-valent vertices of two disjoint copiee of Ttf2,k: &!*••

the example of the graph with properties which ar« '•quired

(5)

in Theorem 1.

Case iii): For k - 2 see Fig. 1. Let k ? 3 . Consider two disjoint copies of T, m ^ ^ and a plane graph K ^ * C2 r, where r a ^ i ^ x 4 k-i> • T n e Plane graph YL2* C2 r has exact- ly two 2r-gonal faces. Insert one copy of T^ ^ ^-1 i n t o o n&

of them and suitably identify its 1-valent vertices with vertices of the face. Make the same with the second copy of

Tl 4 k-1 i n t n e s e c o n d f a c e» i n t n i a construction the iden- tification musv be made so that none of the vertices obtain- ed by identification can be adjacent in the resulting graph.

It can be easily seen thqt the obtained graph has the requi- red properties. For example, Fig. 2 shows the ct-graph ob- tained by means of the described construction if k = 4, i.e.

from two copies of T^ ^ 3 and K2*. C.g.

Case iv): Consider the tree T2 3 k a n d t n e D i a n e graph

C2r ^i#e* t n e ° yc l e of t n e --ength 2 r ) , where r = v . , ( T2 -, k) . Insert T2 3 k into the face of C2 p and identify the r 1-va- lent vertices of T2 3 j. with r 2-valent vertices of C2 so that none of the vertices obtained by identification can be adjacent in the resulting graph. It can be easily seen that the obtained graph has exactly r 2-valent vertices - uniden- tified vertices of C2 r. Take two disjoint copies of this graph, insert each of them into one of two 2r-gonal faces of the plane graph K2><C2:p and identify the r 2-valent verti- ces of each copy with r vertices of the correspondent 2r-go- nal face. This second identification must be made so that a- gain none of the identified vertices can be adjacent in the resulting graph. It can be easily seen that the obtained

846 -

(6)

graph has the required properties.

An example of this graph for k = 3 i® shown on Fig* 3*

Fig. 2

(7)

Fig. з

- 848 -

(8)

Now we s h a l l prove the n e c e s s i t y of the conditions.

Case i ) : Necessity of the condition cf& 5 i s a w e l l - known consequence of Euler's formula ( s e e 121), n e c e s s i t y of the condition k » 1 i s e v i d e n t .

Cases i i ) , i i i ) and i v ) : i?rom the well-known conse- quence of E u l e r ' s formula f o r t r i a n g l e - f r e e graph G « (V,E) (2) I E U 2 I V I - 4

and from the f a c t that the ct-graph i s b i p a r t i t e i f t 2 l , i t follows that

2 } V | > 2 | V l - 4 > I E | * £ £ d e g ( v ) > l < / | V |

* ireV * and hence ct'•< 4 . I t remains t o examine the case t > 3 , cT= 3f

k > 2 .

Denote by oc^ the number of (3+it)-valent vertices of G (i * 0,l,...,k-l). from (2) it follows that

and after an adaptation we have

(3) oC0> 8 • (t-l)oCx.

Denote by e the number of edges which are incident with 3-valent vertices of G. Evidently

cc0 » § e0 and ac x> ^ e0,

from which using (3)

028 + (M-$)v

therefore t < 3 , which completes the proof.

(9)

4. Remark. Rosenfeld C43 studied 3-polytopes of cons- tant weight i.e. 3-polytopes with constant sum of valencies of vertices on each its edge and proved that such a 3-poly- tope is either a 3-polytope of regular graph or its degree set is -[3,4i or £3,5}. After some considerations it can be shown that all these 3-polytopes are 3-polytopes of constant tolerance of edges.

R e f e r e n c e s

Cll B.D. ACHARYA and M.N. VARTAK: On the construction of grapha with given constant valence-difference

(S) on each of their lines, WiSs. Z. TH lime- nau 23(1977), No 6, 33-60.

[21 M. BEHZAD and G. CHARTRAND: Introduction to the theory of graphs, Allyn and Bacon, Boston 1971.

[3] B. GRUNBAUM: Convex Polytopes, Wiley and Sons, 1967.

[4.] M. ROSENFELD: Polytopes of constant Weight, Israel J.

Math. 21(1975), 24-30.

Katedra geometrie a algebry Katedra matematiky VŠSE Přírodovědecké fakulta Nejedlého sady 14 Univerzity P.J. Šafárika 306 14 Plzeň

Komenského 14, 041 54 Košice Československo Československo

(Oblátům 18.5. 1981)

850

Odkazy

Související dokumenty

[11] A locally symmetric contact metric space is either Sasakian and of constant curvature 1, or locally isometric to the unit tangent sphere bundle of a Euclidean space with

By weakening to a notion called polytopes with integral structure, one of the authors proved in [3] that one can construct a polytope with integral structure for any w ∈ W such that

- poloha statistického souboru na číselné ose, okolo jaké hodnoty znaky kolísají Aritmetický průměr. = součet hodnot znaku zjištěných u všech jednotek souboru,

Vedení školy v roce 2007 se soustředilo na vstříc- nost a přístup učitelů ke studentům, na kvalitu výuky studentů v kombinované formě studie, na vstřícnost

Vysoká škola evropských a regionálních studií získala grant na pro- jekt „Nové výukové metody a využití informačních technologií při realizaci školních vzdělávacích

(viz BOD 2 Aktualizace dlouhodobého zámě- ru vzdělávací a vědecké, výzkumné, vývojové a inovační umělecké a další tvůrčí činnosti na Vysoké škole evropských a

Proof of Theorem 1.1: If 0 is a bipartite half of a bipartite distance-regular graph of valency 3, then we can use the classification of such graphs given by Ito in [11].. It is

Theorem 5.1 Let G be a connected regular graph with four distinct eigenvalues. Then G is one of the relations of a 3-class association scheme if and only if any two adjacent