• Nebyly nalezeny žádné výsledky

1. Introduction and r6sum6 of results LAWRENCE MARKUS and RICHARD A. MOORE OSCILLATION AND DISCONJUGACY FOR LINEAR DIFFERENTIAL EQUATIONS WITH ALMOST PERIODIC COEFFICIENTS 1

N/A
N/A
Protected

Academic year: 2022

Podíl "1. Introduction and r6sum6 of results LAWRENCE MARKUS and RICHARD A. MOORE OSCILLATION AND DISCONJUGACY FOR LINEAR DIFFERENTIAL EQUATIONS WITH ALMOST PERIODIC COEFFICIENTS 1"

Copied!
25
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

OSCILLATION AND DISCONJUGACY FOR LINEAR DIFFERENTIAL EQUATIONS WITH ALMOST PERIODIC COEFFICIENTS 1

BY

LAWRENCE MARKUS and RICHARD A. MOORE Yale University

1. I n t r o d u c t i o n and r6sum6 o f results E q u a t i o n s of t h e form

( r ( x ) y ' ) ' + K ( x ) y = 0, (1)

where r (x) > 0 a n d K (x) are real c o n t i n u o u s f u n c t i o n s on - c~ < x < o0, are classified, b y t h e b e h a v i o r of their real solutions, as ( + ) - o s c i l l a t o r y or n o n - o s c i l l a t o r y . I n t h e first i n s t a n c e one n o n - t r i v i a l (not i d e n t i c a l l y zero), a n d t h e r e b y every, s o l u t i o n vanishes a t a r b i t r a r i l y large abscissas; in t h e second i n s t a n c e e v e r y n o n - t r i v i a l solution is n o n - v a n i s h i n g for sufficiently large abscissas. A special i n s t a n c e of n o n - o s c i l l a t i o n is t h e d i s c o n j u g a t e case i n which e v e r y (non-trivial) solution has a t m o s t one zero on - c~ < x < co. I t is k n o w n t h a t a n e q u a t i o n of t h e form (1) is d i s c o n j u g a t e if a n d o n l y if there is a solution which is everywhere positive.

Our p r i n c i p a l i n t e r e s t concerns t h e s i t u a t i o n where r ( x ) = 1 a n d K (x) = - a + b p ( x ) . Here (a,b) are real p a r a m e t e r s a n d p (x) is a real a l m o s t periodic f u n c t i o n . W e shall note, i n this case, t h a t n o n - o s c i l l a t i o n a n d d i s c o n j u g a c y are coincident. Also we shall f i n d t h a t t h e d o m a i n D i n t h e ( a , b ) - p a r a m e t e r plane, for which t h e c o r r e s p o n d i n g e q u a t i o n s are d i s c o n j u g a t e , is closed a n d convex.

W e generalize t h e t h e o r y of Hill's e q u a t i o n (in which p ( x ) is periodic) b u t , of course, w i t h o u t u s i n g t h e F l o q n e t r e p r e s e n t a t i o n , which is n o t applicable here. F o r example, i n t e r i o r to t h e d i s c o n j u g a c y d o m a i n D there is a basis of solutions each of which has a n a l m o s t periodic l o g a r i t h m i c d e r i v a t i v e . F o r t h e b o u n d a r y of D t h e analysis is more corn- 1 This research was supported by the Office of Scientific Research of the United States Air Force.

7 - 563802. Acta mathematica. 96. Imprim6 le 22 octobre 1956.

(2)

100 L A W R E N C E M A R K U S A N D R I C H A R D A . M O O R E

p l i c a t e since h e r e we can d i s p l a y a n e x a m p l e of a n a p p r o p r i a t e e q u a t i o n h a v i n g no (non- t r i v i a l ) b o u n d e d s o l u t i o n f r o m t h e a n a l o g y w i t h H i l l ' s e q u a t i o n one m i g h t e x p e c t a n al- m o s t p e r i o d i c s o l u t i o n in such a case.

F i n a l l y we i n v e s t i g a t e t h e effect on D of p e r t u r b a t i o n s in t h e f u n c t i o n p (x).

2. T h e d i s c o n j u g a c y d o m a i n for e q u a t i o n s w i t h a l m o s t periodic coefficients

D E F I N I T I O N . The diseonjugacy domain D o/

(r(x)y')' + ( - a + b p ( x ) ) y = 0, (2) r (x) > 0 and p (x) being real continuous/unctions on - c~ < x < c~, is the subset o / t h e real (a, b)-pIane wherein the corresponding equations are discon~ugate.

W e shall p i c t u r e t h e b-axis h o r i z o n t a l l y a n d t h e a - a x i s v e r t i c a l l y . Of course, D d e p e n d s on t h e p a r t i c u l a r f u n c t i o n s r (x) > 0 a n d p (x), b u t D a l w a y s c o n t a i n s t h e h a l f - a x i s a >_ 0, b = 0. T h e set of p o i n t s (a, b) for which t h e c o r r e s p o n d i n g e q u a t i o n s (2) a r e o s c i l l a t o r y is t h e o s c i l l a t i o n d o m a i n 0 a n d , w h e n r (x) - 1, t h i s a l w a y s c o n t a i n s t h e h a l f - a x i s a < 0, b = 0.

W e shall be i n t e r e s t e d in t h e d i s c o n j u g a c y d o m a i n D, p a r t i c u l a r l y for r (x) - 1, a n d for v a r i o u s f u n c t i o n s p (x). Below are s e v e r a l e x a m p l e s i n d i c a t i n g s o m e of t h e p o s s i b i l i t i e s for t h e f o r m of D.

E x a m p l e 1. lim p ( x ) = + o % lim p ( x ) = - o % e.g. p ( x ) = x . H e r e D is t h e half-

x - ~ o o x--~ oo

a x i s a > _ 0 , b ~ 0 .

E x a m p l e 2. p (x) -~ O. H e r e D is t h e h a l f - p l a n e a _> 0.

E x a m p l e 3. p (x) u n b o u n d e d a b o v e (below). H e r e D c o n t a i n s no r a y in b < 0 (in b > 0).

H o w e v e r D can c o n t a i n a n i n t e r i o r , e.g., for p ( x ) = x sin (x2), D c o n t a i n s t h e p a r a b o l i c r e g i o n a >_ b~/ 4.

E x a m p l e 4. sup p (x) = M > 0, inf p (x) = m < 0. H e r e t h e l a r g e s t s e c t o r

- o 0 < x < o ~ - o r < x < ~

c o n t a i n e d in D is b o u n d e d b y t h e r a y s a = M b , a > 0 a n d a = rob, a ~ 0. If, say, M > 0 a n d m > 0, t h e n t h e l a r g e s t s e c t o r c o n t a i n e d in D i s b o u n d e d b y t h e r a y s a = M b >_ 0 a n d a = m b ~ O .

E x a m p l e 5. p ( x ) = sin log+ Ix ]. H e r e D is e x a c t l y t h e s e c t o r in w h i c h I bl _< a > 0.

I n s t u d y i n g t h e l i n e a r e q u a t i o n (1) one o f t e n utilizes t h e a s s o c i a t e d R i c c a t i e q u a t i o n

u' + u2/r (x) + K (x) = 0. (3)

F o r a s o l u t i o n y(x) of (1), n o n - v a n i s h i n g on some i n t e r v a l I , u ( x ) = y ' ( x ) r ( x ) / y ( x ) is a s o l u t i o n of (3) on I . Moreover, e v e r y sSlution of (3) can b e so o b t a i n e d . W e shall b e pri-

(3)

OSCILLATION A N D D I S C O N J U G A C Y F O R L I N E A R D I F F E R E N T I A L E Q U A T I O N S 1 0 1

m a r i l y i n t e r e s t e d i n t h e case w h e r e r(x) ~- 1 a n d l K ( x ) I < M2, for s o m e r e a l b o u n d M 2.

T h e n a s o l u t i o n u (x) of t h e R i c c a t i e q u a t i o n c a n b e d e f i n e d for all x if a n d o n l y if I u (x) [ < M e v e r y w h e r e .

Also, i n case r (x) - 1 a n d I K ( x ) I < M2, t h e b o u n d e d s o l u t i o n s of t h e R i c c a t i e q u a t i o n fill a closed b a n d w h i c h is e i t h e r e m p t y , a s i n g l e s o l u t i o n c u r v e , or a h o m e o m o r p h of 0 _< y <_ 1, - ~ < x < c~ i n t h e p l a n e . T h i s b a n d is n o n - e m p t y if a n d o n l y if t h e corre- s p o n d i n g l i n e a r e q u a t i o n (1) is d i s c o n j u g a t e . T h e b a n d is closed, t h a t is t h e e x t r e m a l u p p e r a n d l o w e r s o l u t i o n s a r e e a s i l y s e e n t o b e b o u n d e d since o t h e r w i s e e a c h n e a r b y s o l u t i o n u (x) w o u l d s o m e w h e r e s a t i s f y I u (x0) [ > M . B u t t h e n I u (x) l w o u l d g r o w m o r e r a p i d l y to i n f i n i t y t h e n a n u n b o u n d e d s o l u t i o n of u ' = - u 2 + M 2 a n d so u ( x ) w o u l d n o t e x i s t for all r e a l x.

L~M~aA 1. Let r(x) > 0 and K (x) be real almost periodic/unctions. I / t h e equation

(r(x)y')' + K ( x ) y = 0 (1)

is not disconjugate, then it is oscillatory at both +_ ~ .

Proo/. S u p p o s e a n o n - t r i v i a l s o l u t i o n y(x) of (1) v a n i s h e s a t t w o d i s t i n c t p o i n t s x = ~ a n d x =/~. F o r e a c h ~ > 0 t h e r e a r e a r b i t r a r i l y l a r g e ~ - a l m o s t periods, s a y Tn, of r (x) a n d K (x). C o n s i d e r t h e t r a r / s l a t e d e q u a t i o n s

(r(x +T~)y')' + K ( x + T ~ ) y = 0 (ln)

w i t h s o l u t i o n s Yn (x) w h i c h a s s u m e t h e s a m e i n i t i a l v a l u e s a t x = :~ as does y (x). Also t h e r e is a s o l u t i o n Yn(x) of (1) for w h i c h Y ~ ( x + r ~ ) = y~(x).

F o r e a c h ~ > 0 t h e r e exists a n e > 0 s u c h t h a t y~(x) v a n i s h e s o n fl - ~ < x < f i + $.

T h e n Y~(x) v a n i s h e s a t x = ~ + v ~ a n d also n e a r fl + r n . H e n c e e v e r y s o l u t i o n of (1) m u s t v a n i s h o n ~ + ~ n < - x _<fl +T~ + ~. S i n c e t h e t r a n s l a t i o n n u m b e r s rn a r e a r b i t r a r i l y l a r g e (or s m a l l ) , (1) is o s c i l l a t o r y . Q . E . D .

L E M M A 2. Let the real continuous /unctions Kn(x), r ~ ( x ) > 0 , n = l , 2 . . . on - c~ < x < co, converge uni/ormly on each compact interval to K (x) and r (x) > O, respec- tively. I / e a c h equation

(rn(x)y')' + K n ( x ) y = 0 (In)

is disconjugate, then so is

(r(x)y')' + K ( x ) y = 0. (1)

Proo/. S u p p o s e t h a t a ( n o n - t r i v i a l ) s o l u t i o n y ( x ) of (1) h a s t w o d i s t i n c t zeros, x 0 a n d x 1. C o n s i d e r t h e s o l u t i o n s yn(x) of (1,) w i t h i n i t i a l d a t a y , (x0) = 0, Y'n (xo) = Y' (x~).

L e t L be a c o m p a c t i n t e r v a l c o n t a i n i n g x 0 a n d x 1 i n its i n t e r i o r . F o r s u f f i c i e n t l y l a r g e n, [ r~ (x) - r ( x ) I, IK~(x) - K ( x ) l, a n d I Y~(X) - y(x) l a r e s m a l l e r t h a n a n y p r e s c r i b e d

(4)

102 L A W R E N C E M A R K U S A N D R I C H A R D A . M O O R E

e > 0 for x E L . T h e r e f o r e y~ (x) v a n i s h e s n e a r x 1. B u t t h i s c o n t r a d i c t s t h e h y p o t h e s i s t h a t (ln) is d i s c o n j u g a t e . T h u s (1) is n e c e s s a r i l y d i s c o n j u g a t e . Q . E . D .

L E M M A 3. L e t r~(x) > 0, K~(x) be real c o n t i n u o u s / u n c t i o n s on - c ~ < x < c ~ and such that

(r~(x)y')' + K ~ ( x ) y = 0 (i = 1, 2) (1~) are non-oscillatory at x = + oo. T h e n [or each t on 0 < t < 1 the equation

[ ( t r l ( x ) § (1 - t)r~(x))y']' + [ t K l ( x ) + (1 - t ) K 2 ( x ) ] y = 0 (lt) is also non-oscillatory at x - + c<).

Proo/. L e t ui (x) = r i (x) y; ( x ) / y i (x), w h e r e y~ (x) is a s o l u t i o n of (li), p o s i t i v e for x > x 0.

T h e n

u~ + u~/r~

(x) + K~(x) = 0 (i = 1, 2) (3~) for x > x 0. C o n s i d e r u t ( x ) = t u l ( x ) + (1 - t ) u~(x). T h e n we c o m p u t e

- t(1 - t) (r2u I - rlu2) 2 "

u~ + u ~ / [ t r 1 + (1 - t)r2] + [ t K 1 § (1 - t)K2]

r l r 2 [tr 1 + (1 - t)re]

T h u s t h e r e is a s o l u t i o n , c o n t i n u o u s for x > x , , of

u' + u 2 / [ t r l + ( i - t)r2] + [ t K 1 + (1 - t ) g 2 ] = O.

T h e r e f o r e (It) is n o n - o s c i l l a t o r y a t x = + c~. Q . E . D .

O n e is o f t e n i n t e r e s t e d i n t h e d i s c o n j u g a c y d o m a i n of t h e t r a n s l a t e s of e q u a t i o n (1) or e v e n of l i m i t t r a n s l a t e s . I f K ( x ) is a l m o s t p e r i o d i c a n d x~ a r e real n u m b e r s s u c h t h a t l i m K ( x + x ~ ) = K * ( x ) u n i f o r m l y o n - c ~ < x < c ~ , t h e n o n e s t a t e s t h a t K * ( x ) is i n

n-§

t h e h u l l H { K ( x ) } g e n e r a t e d b y K ( x ) . I t is k n o w n t h a t K * (x) is a l m o s t p e r i o d i c a n d K ( x ) C H { K * ( x ) } , cf. [5, p. 73].

T H E O a E M 1. L e t r ( x ) > 0 and p ( x ) be real almost p e r i o d i c / u n c t i o n s . T h e n the dis- conjugaey d o m a i n D o[

( r ( x ) y ' ) ' + ( - - a + b p ( x ) ) y = 0 (2) is a closed convex subset o[ the (a,b)-plane. F u r t h e r m o r e , i [ / o r real translates Xn, n - 1, 2, . . . . l i m r (x + x~) - r* (x) > 0 and l i m p (x + x~) = p* (x) u n i / o r m l y on - oo < x < oo, then

n - ~ - o o n - - > r

D* = D, where D* is the discon]ugacy d o m a i n o/

(r* ( x ) y ' ) ' + ( - a + bp* ( x ) ) y = 0. (2*) Proo/. B y t h e a b o v e t h r e e l e m m a s , D is closed, c o n v e x a n d i t s c o m p l e m e n t is t h e o s c i l l a t i o n d o m a i n O. T o s h o w D* = D we n e e d o n l y s h o w t h a t D ~ D* a n d t h e n t h e c o n c l u s i o n follows f r o m s y m m e t r y .

(5)

O S C I L L A T I O N A N D D I S C O N J U G A C u F O R LINEAI~ D I F F E R E N T I A L E Q U A T I O N S I 0 3

For a fixed (a,b) E D each solution of (2) and of

(r(x § Xn)y')' § ( - a § bp(x § xn))y

= 0 (2,) is d i s c o n j u g a t e . S u p p o s e t h e r e is a n o n - t r i v i a l o s c i l l a t o r y s o l u t i o n y* (x) of (2*). T h e n , for s u f f i c i e n t l y large i n t e g e r s n, t h e s o l u t i o n of (2~) h a v i n g t h e s a m e i n i t i a l v a l u e s as

y* (x)

m u s t h a v e m o r e t h a n one zero a n d t h u s be o s c i l l a t o r y . B u t t h i s c o n t r a d i c t s t h e d i s c o n j u - g a c y of (2~). T h e r e f o r e

D c D*.

Q . E . D .

COROLLARY.

The oscillation domain 0 o/

(2)

is open, connected and its complement in the (a, b)-plane is D.

Proo/.

Since D a n d 0 are c o m p l e m e n t a r y , O is open. I f

(ao, bo)E O,

t h e n , b y t h e S t u r m - P i c o n e c o m p a r i s o n t h e o r e m , so is (a 0 - $, b0) E O for e~ch ~ > 0. Moreover, 0 con- r a i n s t h e s e c t o r a < - I b ] sup p(x). T h e r e f o r e 0 is c o n n e c t e d . Q . E . D .

W e n e x t p r o c e e d t o a d e t a i l e d s t u d y of t h e f o r m of D. To s i m p l i f y t h e a n a l y s i s we t r e a t o n l y t h e case r(x) ~ 1 a n d we often m a k e t h e c o n v e n t i o n t h a t p ( x ) h a s m e a n zero.

F o r t h e e q u a t i o n (1) L e i g h t o n [9] gives t h e f o l l o w i n g c r i t e r i o n for oscillation:

dx/r(x)

= o o a n d

f K ( x ) d x =oo.

Xo x o

F r o m t h i s , if r (x) - 1 a n d p (x) is r e a l a l m o s t p e r i o d i c w i t h zero m e a n , i t follows t h a t D lies in t h e h a l f - p l a n e a > O, for t h e l i n e a r e q u a t i o n

y" § ( - a + b p ( x ) ) y - O . (L)

B y a r e f i n e m e n t of L e i g h t o n ' s t e s t one c a n show t h a t D, e x c e p t i n g t h e o r i g i n , lies in a > 0.

T H E O R E M 2.

Let p(x) ~ 0 be a real almost periodic/unction o/ mean zero. Then/or y" + ( - a + b p ( x ) ) y

= 0 , (L)

D, excepting the origin, lies in a > 0

Proo/.

W e n e e d o n l y show t h a t for a = 0, b ~: 0 t h e c o r r e s p o n d i n g e q u a t i o n (L) is o s c i l l a t o r y . F o r t h e first case a s s u m e

f p(s)ds

is u n b o u n d e d . T h e n one can r e p l a c e p ( x )

0

b y a f u n c t i o n in

H { p ( x ) ) ,

which we shall still d e n o t e as

p(x),

for which e i t h e r

g~ x

l i m sup

b f p(s)ds

= c~ or lim s u p

b f p (s) ds

= ~ , [4, p. 48]. T h e n f r o m a k n o w n r e s u l t

X ~ 0 X - ~ - - ~ 0

[ l l , p. 138], (L) is o s c i l l a t o r y .

x

F o r t h e s e c o n d case a s s u m e t h a t

f p(s)ds

is a l m o s t periodic. L e t

v(x)

be t h e a l m o s t

0

(6)

1 0 4 L A W R E N C E M A R K U S A N D R I C H A R D A . M O O R E

periodic f u n c t i o n with m e a n zero a n d such t h a t v' (x) - p ( x ) . T h e n there exists a n u m b e r

9J

x 0 for which v (x0) = 0 a n d v(x) = f p ( s ) d s . Suppose t h a t t h e R i c c a t i e q u a t i o n

2"11

u' + u 2 + b p ( x ) - O , b~=O (R)

has a b o u n d e d s o l u t i o n . N o w if for e v e r y p * ( x ) 6 H { p ( x ) } , t h e c o r r e s p o n d i n g R i c c a t i e q u a t i o n (R*) h a d a u n i q u e b o u n d e d solution, t h e n it is easy to show (cf. T h e o r e m 9 a n d r e m a r k after T h e o r e m 16) t h a t this solution u ( x ) is a l m o s t periodic. B u t this c o n t r a d i c t s t h e fact t h a t t h e m e a n of u(x) 2 is clearly zero. T h u s we replace p(x) b y some f u n c t i o n i n H p { (x)}, still called p ( x ) , for which there are two b o u n d e d solutions, u 1 (x) a n d u 2 ( x ).

X 3:

N o w ui (x) = u, (Xo) - f ui (s)2ds - b f p (s)ds.

~t'o 2"0

x

L e t lim [ui(x~) - f u~(s)2ds] = w~

2"--> -[- oo 2"0

X

a n d lim [u~(x0) - fu~(s)2ds] = ~i, i = 1, 2.

2 " ~ - - ~r :i,. o

I t c a n be shown, cf. T h e o r e m 14, t h a t l i m i n f l u l ( x ) - u 2(x) l = 0 a n d so ~ 1 = ~ 2 = : r

~o 1 = (0 2 - co. E i t h e r ~ > 0 or eo < 0. S a y to < 0 a n d t h e other case is similar. T h e n u~ (x) <

x

0)/2 - b f p (s) d s = z (x) for large x > k. B u t z(x) is a n a l m o s t periodic f u n c t i o n with n e g a t i v e

2"0

m e a n a n d so 0 < exp f u~(s)ds < exp f z ( s ) d s < K , for some b o u n d K , w h e n x > k. There-

k k

fore t h e linear e q u a t i o n (L) has a basis of b o u n d e d solutions on a half-axis a n d t h u s (L) is oscillatory. B u t this c o n t r a d i c t s t h e a s s u m p t i o n t h a t (R) has a b o u n d e d solution a n d so (L) is oscillatory. Q . E . D .

T H E 0 R E M 3. T h e disconjugacy d o m a i n D o/

y " + ( - a + b p ( x ) ) y - 0, (L)

where p (x) I 0 is real almost periodic w i t h m e a n zero, contains the sector bounded by the rays a = b sup p (x) > 0 a n d a = b i n f p (x) > 0. T h i s is the largest sector belonging to D i n

- - o r - - o r ~

that no other rays are in D. T h e boundary o / D is a continuous curve a(b) which is strictly monotone decreasing on b < 0 a n d increasing on b ~ O.

(7)

O S C I L L A T I O N A N D D I S C O N J U G A C Y F O R L I N E A R D I F F E R E N T I A L E Q U A T I O N S 105 Proo/. Consider a r a y a = kb > 0. T h e n for such p a r a m e t e r values (L) becomes

y " + b ( - k + p ( x ) ) y = O. (Lk) T h u s i n b > 0 t h e r a y s for which - k + sup p (x) < 0 yield d i s c o n j u g a t e e q u a t i o n s . I n b < 0, t h e rays which lie i n D correspond to - k § inf p (x) _> 0. F o r a n y other ray, i n a > 0 , b ( - k § becomes positive for x o n some i n t e r v a l . T h u s for large [b[, t h e corresponding e q u a t i o n is oscillatory a n d such r a y s do n o t belong to D.

T h a t t h e b o u n d a r y of D is a m o n o t o n e c o n t i n u o u s curve a(b) follows from t h e fact t h a t D is convex a n d c o n t a i n s a sector. Q . E . D .

COROLLARY. a ( b ) ~ M b /or b--> + c~2; a(b),,~ mb /or b - + - cx3.

If p (x) assumes its s u p r e m u m M or its i n f i m u m m a t some p o i n t , t h e n one can f u r t h e r e s t i m a t e a (b).

THEOREM 4. Let p(x) ~:0 be a real almost periodic /unction o/ mean zero and p ( x ) E C (2). I / p(Xo) = M = sup p(x) (or i/ p(x~) = m = inf p(x)) then the domain

- 0 r < x < o r - r162 < x < o o

D /or the equation (L) has a boundary

a ( b ) = M b - O ( b ~) for b > 0 (or a ( b ) = m b - O ( b 8 9 for b < 0 ) .

Proo/. L e t p(xo) = M . T h e n for each h < p " (x0) t h e r e is a n e > 0 such t h a t p(x) > M

§ 89 (x - x0) 2 on I x - x 01 < e. T a k e e small a n d define k b y 88 (M - k ) / h = - e2. Consider t h e r a y s a = kb > 0 for k j u s t tess t h a n M. A l o n g such rays we h a v e

y " + b ( - k + p ( x ) ) y = O , b > 0 . (L~) F o r these e q u a t i o n s , w h e n e v e r Ix - x 01 <- ~

b ( - k + p(x)) > b ( - k + M + ~ (X - X o ) 2) >7~b8 (M - k ).

N o w if (7 b / 8 ) ( M - k) > - hzr2/(M - k) on a n i n t e r v a l of l e n g t h [ - ( M - k)/h] "~, our e q u a t i o n (L) is oscillatory. T h u s t h e c u r v e

7b ( M - k) = - h z ~ / ( M - k), a = kb

lies i n t h e oscillatory region of (L). T h u s a (b) lies a b o v e M b - 2zeV - 2 h b / 7 for sufficiently large b > 0. A similar c a l c u l a t i o n holds for b < 0. Q.E.D.

I f one assumes t h a t p (x) has a higher order of " f l a t n e s s " a t its m a x i m u m t h e n still s h a r p e r a s y m p t o t i c e s t i m a t e s for a(b) are possible. W e i n d i c a t e t h e results o n l y i n t h e e x t r e m e case where p(x) = M (or p(x) = m) on a n i n t e r v a l

(8)

on O < x < o o in case w ( x ) =

0

our a b o v e e q u a t i o n

1 0 6 L A W R E N C E M A R K U S A N D R I C H A R D A . M O O R E

THEOREM 5. Let p(x) 2z 0 be real almost periodic o / m e a n zero. Assume p(x) = M = sup p ( x ) ( o r p ( x ) = m = inf p ( x ) ) / o r x o n a n i n t e r v a l . T h e n , / o r ( L ) , a ( b ) = M b - O ( 1 )

oo < x < ~ - o o < x < ~

/or b > 0 (or a(b) - m b - 0 ( 1 ) / o r b < 0). Thus the boundary curve a(b) is asymptotic to a line o/slope M (or slope m).

Pro@ A s s u m e p ( x ) - M on IX-Xo]<_s. On t h e r a y a =kb, b > 0 , we h a v e

y" + b ( - k + p ( x ) ) y - 0 . (Lk)

B u t b ( - k + p (x)) = b ( - k + 3:1) on Ix - x 01 < e. If b ( - k + M ) k ~2/4c2, (L) is o s c i l l a t o r y . T h u s for a = M b - J r 2 / 4 e 2, large b > 0 , we h a v e oscillation. B e c a u s e of its c o n v e x i t y , a(b) is a s y m p t o t i c t o a line of slope M b e t w e e n a - M b a n d a = M b - ~ 2 / 4 s 2. The case for p(x) = m is similar. Q . E . D .

W e n o w show t h a t , in m o s t i m p o r t a n t cases, t h e b o u n d a r y of D is t a n g e n t t o t h e b-axis a t t h e origin. T h e r e b y D c o n t a i n s t h e m a x i m a l s e c t o r p r o p e r l y in its interior.

T H E O R E M 6. Let p(x) be real almost periodic and f p(s)ds also almost periodic. Then

0

the domain D o/equation (L) has a boundary a(b) which is tangent to the b-axis at the origin.

Pro@ L e t y =exp(~ax)z, where y(x) is a s o l u t i o n of

y " + ( - a + b p ( x ) ) y = O , a > 0 . (L) T h e n one c o m p u t e s

(exp (2 ~'ax) z')' + (exp (2 Vax) bp(x))z = O.

N o w a n o n - o s c i l l a t i o n t e s t of Moore [12] s t a t e s t h a t e q u a t i o n (1) is n o n - o s c i l l a t o r y K(t) dt has a n oscillation < 1 on O < x < o o . F o r

t

x

bf

w(x) = 2 ~ a p(t)dt.

0

L e t w = oscillation f p(t)dt. T h e n t h e p a r a b o l a ( b / 2 ~ / a ) w - 1 or a = (w2/l)b 2 lies in D.

0

T h e r e f o r e a'(b) exists a t b = 0 a n d t h e r e e q u a l s zero. Q . E . D .

COROLLARY. I n case f p(s) is almost periodic, the domain D o/ (L) contains the

0

maximal sector (except /or the origin) in its interior. Also on the boundary curve a(b) o/ D, ( - a + bp(x)) is somewhere positive.

(9)

O S C I L L A T I O N A N D D I s c o N J U G A C Y :FOR L I : N E A R DIF:FEtCESITIAL E Q U A T I O : N S 1 0 7

Proo/. S i n c e a ' (0) = 0, t h e c o n v e x d o m a i n D c o n t a i n s t h e r a y s a = m b , a = M b, for b > 0, i n its i n t e r i o r . T h u s D c o n t a i n s t h e r a y s a = M b - ~, a = r o b - s for s o m e s > 0 w h e n I bl is large. S i n c e ( - a + b p ( x ) ) is a r b i t r a r i l y n e a r to zero a t p o i n t s of t h e e x t r e m a l r a y s , ( - a + b p ( x ) ) b e c o m e s p o s i t i v e i n D. Q . E . D .

F i n a l l y we s h o w t h a t i n m a n y i m p o r t a n t cases D is s y m m e t r i c i n t h e a-axis.

T H E O R E M 7. Let p ( x ) be real almost periodic with F o u r i e r /requencies {~n}. I / the { ~ } are rationally independent, then /or the b o u n d a r y curve a(b) o/ D /or the equation (L), we have the s y m m e t r y

a (b) = a ( - b).

Proo/. L e t p ( x ) h a v e F o u r i e r series ~ r162 ix=x w h e r e ~n = $ - ~ . W i t h i n t h e h u l l n = ar

H { p (x)}, c o n v e r g e n c e of t h e F o u r i e r coefficients of t r a n s l a t e s p (x + h~) i m p l i e s u n i f o r m c o n v e r g e n c e o n - c~ < x < c~. N o w o n e c a n select a t r a n s l a t e h~ so t h a t I ~t~h= - ,n I < (89 ( m o d 2 Jr) for n = 1,2 . . . m. T h i s is p o s s i b l e s i n c e t h e f r e q u e n c i e s a r e l i n e a r l y i n d e p e n d e n t o v e r t h e r a t i o n a l s . B u t t h e n we c a n d e f i n e a s e q u e n c e of t r a n s l a t e s p (x + h~) w h o s e F o u r i e r coefficients c o n v e r g e t o t h o s e of - p ( x ) . T h u s - p ( x ) E H { p ( x ) } a n d D is s y m m e t r i c i n t h e a-axis. Q . E . D .

3. Interior of the disconjugacy domain

W e s h a l l n o w c o n s i d e r t h e d i f f e r e n t i a l e q u a t i o n s

y " + ( - a + b p ( x ) ) y - O (L)

for (a, b) i n t h e i n t e r i o r of t h e d i s c o n j u g a c y d o m a i n D. T h e n t h e a s s o c i a t e d R i c c a t i e q u a t i o n

u ' + u 2 + ( - a + b p ( x ) ) - 0 (R)

h a s s o l u t i o n s w h i c h a r e d e f i n e d a n d b o u n d e d o n - c~ < x < c~.

T H E O R E M 8. L e t

u ' + u 2 + K (x) + ~ - 0 (R~)

have bounded solutions on - c~ ~ x <: c~ /or all s m a l l ~, e > ~ ~ O, where K (x) is a real con- t i n u o u s bounded / u n c t i o n on - c~ < x < c~, I K (x) I < M2" T h e n /or each such e there are i n / i n i t e l y m a n y bounded solutions o/ R~ and these /ill a closed bounded d o m a i n Be i n the ( x , u ) - p l a n e . A l s o B~.~ lies interior to B~, i/ Q < ~2. T h e u p p e r and lower bounded solutions uu (x) and uL (x), respectively, o / R 0 are separated, that is,

e 2

i n f I uu(x) - uL (x) I >.~V(522~i ~ + 8ei > O.

(10)

1 0 8 L A ~ , V R E : N C E M A R K U S A N D R I C H A R D A . M O O R E

Furthermore/or any two bounded solutions u 1 (x), u 2 (x) o / R o which are not both the extreme solutions, we have

lim [ u l ( x ) - u 2 ( x ) [ = 0 as x---> + c ~ or as x - - - ~ - c ~ .

Proo/. I n t h e (x, u ) - p l a n e each R i c c a t i e q u a t i o n RE defines a slope field. I f ~ > el > 0 t h e n t h e slope of t h e s o l u t i o n c u r v e of RE. is m o r e n e g a t i v e t h a n t h a t of t h e s o l u t i o n c u r v e of R ~ , t h r o u g h e a c h p o i n t (x,u). I f Re, h a d j u s t one b o u n d e d s o l u t i o n on - ~ < x < c~, t h e n i t is e a s i l y seen t h a t Re2 w o u l d h a v e no such b o u n d e d solutions. T h u s e a c h RE has a b a n d BE of b o u n d e d solutions. E a c h b a n d Be is closed ( b y t h e a r g u m e n t j u s t p r e c e d i n g L e m m a 1 of S e c t i o n 2) a n d so h a s a n u p p e r a n d a lower s o l u t i o n c u r v e for t h e c o r r e s p o n d - ing e q u a t i o n Re.

I f e~ > Q > 0, t h e n each s o l u t i o n curve of RE~ w h i c h i n t e r s e c t s e i t h e r e x t r e m a l s o l u t i o n of Rel m u s t b e c o m e u n b o u n d e d . T h u s B~ 2 lies i n t e r i o r t o BE,.

L e t ue(x) be t h e s o l u t i o n of Re, ~ > 0 , t h r o u g h (x0, uu(xo) ) for s o m e x 0. T h e n on x > xo uu(x) > ue(x) a n d , since ue(x) lies a b o v e t h e lower edge of BE, us(x) > UL(X). N o w

U u ( X ) - - u e ( x ) = f [--u~(t) 2 § ~ §

XO

a n d u~(x) - u E ( x ) <_ ( 2 M 2 § for x _ > x o.

B u t t h e n u~(x) - ue(x) = e(x - xo) §

z

w h e r e Q ( x ) = J [ u E ( t ) - u~(t)] [ u e ( t ) § u~(t)]dt.

xo

x

H e n c e I Q (x) l < (2 M 2 + ~) 2 M f (t - xo) d t

~0

o~ IQ

(~)1 <-

M ( 2 M ~ + ~) (x - xo) ~.

A n e l e m e n t a r y c a l c u l a t i o n shows t h a t

u~(xo + h ) - u e ( x o + h) >_~ > 0 ,

where h - 2 M ( 2 M ~ § ) a n d ~ = h v - M ( 2 M 2 § 2.

T h u s u ~ ( x 0 § 0 § B u t x o is a r b i t r a r y a n d so u ~ ( x ) - u L ( x ) > ~ ] on

- c~ < x < c~. I n t h e s t a t e m e n t of t h e t h e o r e m we t a k e e = e / 2 .

L e t u l(x) a n d u s(x) be t w o b o u n d e d s o l u t i o n s of R 0 a n d s a y t h a t u l(x) < u 2(x) a n d t h a t u 1 (x) is n o t t h e lowest b o u n d e d s o l u t i o n of R0 (the o t h e r cases are similar). W e shall

(11)

O S C I L L A T I O N A b I D D I S C O I ~ J U G A C Y F O R L I N E A P ~ D I F F E R E N T I A L E Q U A T I O N S 1 0 9

show t h a t

lira l Uu (x) - u 1 (x)l = O.

L e t u ~ (x) be a s o l u t i o n of R o l y i n g below t h e b a n d of b o u n d e d solutions. T h e n n , (x) - u ~ (x) ~ u ~ (x) - u~ (x)

~1 (x) - uL (x) u ~ (x) - uL ( x ) '

for a c o n s t a n t ~t. l~ow a t x = 0, choose u ~ (0) so n e a r to UL(O ) t h a t I)~1 is d e t e r m i n e d s m a l l e r t h a n a p r e s c r i b e d p o s i t i v e n u m b e r ~. N o w for each n u m b e r - N 2 t h e r e is a n abscissa ~ such t h a t u ~ ( x ) < - . u w h e r e v e r u ~ (x) is d e f i n e d for x > 2 . T h u s one call choose N 2 so large t h a t , for x > 2 , [u~ (x) - u ~ ( x ) ] / [ u ~ (x) - uL(x)] is a r b i t r a r i l y n e a r + 1.

B u t t h i s m e a n s t h a t t h e r a t i o I [ u ~ ( x ) - u ~ ( x ) ] / [ u l ( x ) - u L ( x ) ] t b e c o m e s s m a l l e r t h a n $.

T h u s lira inf. ] u u (x) - u 1 (x) I = 0.

x--> oo

W e c o m p l e t e t h e proof b y showing t h a t t h e r a t i o [u~r ( x ) - u~(x)]/'[u~r ( x ) - uL(x)] is m o n o t o n e l y decreasing. B u t t h e d e r i v a t i v e of t h i s r a t i o is e a s i l y f o u n d to be

[u~ (x) - u ~ (x)] [u~ (x) - u~ (x)]/[u~r (x) - u~ (x)] < 0.

T h e r e f o r e t h e r a t i o [u~ (x) - u 1 (x)]/[u 1 (x) - uL (x)] decreases m o n o t o n e l y to zero as x ~ ~ . T h u s ]im l u ~ ( x ) - u ~ ( x ) l = O . Q . E . D .

x-->~

W e can n o w p r o v e a n i m p o r t a n t r e s u l t c o n c e r n i n g a l m o s t p e r i o d i c s o l u t i o n s for t h e R i c c a t i e q u a t i o n (R) i n t e r i o r to t h e d o m a i n of d i s c o n j u g a c y . W e follow t h e m e t h o d i n t r o - d u c e d b y F a v a r d [5, Ch. 3]. S i m i l a r r e s u l t s are o b t a i n e d in [1] a n d [7].

T H E O R E M 9. L e t Ul(X ) a n d u ~ ( x ) be bounded solutions o/

u ' + u ~ + K (x) ~ O, ( R )

where K (x) is a real almost periodic /unction. I / u 1 (x) - u2(x ) > 5 > 0 on - er < x ~- cx~, then u 1 (x) and u 2 (x) are almost periodic a n d the modules o/ their /requencies are contained i n the module o/ K (x).

Proo/. Since u , ( x ) - u2(x ) > 5 > O, u l ( x ) is t h e u p p e r b o u n d e d s o l u t i o n a n d u2(x ) is t h e lower b o u n d e d s o l u t i o n of (R). F u r t h e r we m a k e t h e n o t a t i o n a l s i m p l i f i c a t i o n

_

Consider a sequence of real n u m b e r s {h~} a n d c o r r e s p o n d i n g t r a n s l a t e s of u l(x), t h a t is, u l ( x + h~). W e shall show t h a t , for s o m e s u b s e q u e n c e , u l ( x + h~) converges u n i f o r m l y on - cx~ < x < oo. This shows t h a t u 1 (x) is a l m o s t p e r i o d i c a n d a s i m i l a r a r g u m e n t w o u l d h o l d for u~(x).

(12)

Ii0 L A W R E N C E M A I % K U S A N D R I C H A R D A . M O O R E

Since t h e n u m b e r s u l ( 0 + h ~ ) a n d u2(0 + h~) a r e b o u n d e d sets, e x t r a c t a subse- q u e n e e (again called h.) for which

ul(O+h~)--~r162 u2(O +h,~)-+fl.

Also one can r e q u i r e

K (x + h~)+K* (x)

u n i f o r m l y on - oo < x < oo.

L e t u~' (x) a n d u~ (x) b e t h e s o l u t i o n s of

u ' + u 2 + K * (x) = 0 (R*)

w i t h i n i t i a l c o n d i t i o n s u* (0) = ~r u~'(0) = ft. Then, b y t h e c o n t i n u o u s d e p e n d e n c e of t h e s o l u t i o n s of a d i f f e r e n t i a l e q u a t i o n u p o n t h e coefficients, lim

ul(x + h,~)= u~(x)

a n d

it-~cla

lira u 2(x ~ ]z~) = u~ (x) w h e r e t h e c o n v e r g e n c e is u n i f o r m on each c o m p a c t i n t e r v a l . N o w inf ]u~(x + h~) - u 2(x + h,) I = 6 for each h,. I f

lug(.0)

- u ;

(x0) I <

6 a t s o m e p o i n t x0, t h e n for large n,

lul(xo+h~) u2(xo+h~)l<6,

which is false. T h u s inf lug(x) - u~(x) l > 5 > O. T h e r e f o r e u~(x) is t h e u p p e r b o u n d e d solution of (R*) a n d u~ (x) is t h e lower b o u n d e d s o l u t i o n of (R*).

W e n e e d t o show t h a t a s u b s e q u e n c e of u~ (x + h=) is C a u c h y in t h e m e t r i c space of real, b o u n d e d , c o n t i n u o u s f u n c t i o n s CB( -- c~, oo). S u p p o s e t h e c o n t r a r y . T h e n t h e r e e x i s t s

> 0 such t h a t : for each N 1 t h e r e a r e i n t e g e r s n 1 > N1, m I > ~/*1 a n d some x 1 a t w h i c h l ui (x 1 + h~,) - u l ( x I + hm,)[ > s. Choose a s e q u e n c e Nk-->oo a n d c o r r e s p o n d i n g i n t e g e r s

nk, mk > N k

a n d n u m b e r s x k a t w h i c h

lul (xl + h%) Ul (Xl § hmk) I > s.

E x t r a c t a s u b s e q u e n c e k/ (again called k) for which u 1 (x k +h=z)-->x a n d also u l (xk +h~k)-->~4=~. B u t consider t h e t r a n s l a t e s u 1 (x 4, x k 4. h%) a n d u 1 (x 4. x k 4. h~k ) a n d a g a i n e x t r a c t a s u b s e q u e n c e ki (again called k) so t h a t

K ( x 4-x k 4, h%)--> K* (x)

a n d

K ( x '

~- x k 4"hmk ) - ~ K (x). T h e n t h e u p p e r b o u n d e d s o l u t i o n s of t h e c o r r e s p o n d i n g e q u a t i o n s

~*

(/)*) a n d (J~*) a r e ~ ' (x) a n d d~ (x), r e s p e c t i v e l y , w i t h ~" (0) = h a n d .~' (0) = ~.

B u t

IK((x 4. xk) -+ h%) - K ( ( x 4. xk) + hmz) l<r]

for a n y p r e s c r i b e d ~1 > 0 a n d suf- f i c i e n t l y large k. T h e r e f o r e K* (x) = K* (x) a n d (/~*) is t h e s a m e as (R*). B u t t h e n ~* (x) = -~* (x) a n d ~ = ~ which is a c o n t r a d i c t i o n .

T h e r e f o r e u~ (x 4. h % ) ~ u~' (x) u n i f o r m l y on - co < x < co a n d u~ (x) is a l m o s t periodic:

F u r t h e r m o r e for each s e q u e n c e [h~} wi~h

K ( x + h ~ ) ~ K * ( x )

t h e r e is a s u b s e q u e n c e h~

such t h a t u 1 (x-4

hn,)-->u*~ (x)

w i t h u n i f o r m c o n v e r g e n c e on co < x < co. Therefore we a c t u a l l y m u s t h a v e

u~(x 4- h~)~U*l(X)

u n i f o r m l y on - c ~ < x < co. T h u s t h e m o d u l e of f r e q u e n c i e s of Ul(X ) is c o n t a i n e d in t h a t of

K(x).

Q . E . D .

U s i n g T h e o r e m 8, one can e a s i l y see t h a t t h e r e are no o t h e r a l m o s t p e r i o d i c s o l u t i o n s t h a n u~(x) a n d u 2(x).

(13)

O S C I L L A T I O N A~ID D I S C O ~ J U G A C Y FOI~ L I N E A R , D I F F E R E N T I A L E Q U A T I O N S 11 1

We now relate our results directly to t h e linear differential e q u a t i o n (L) a n d describe a distinguished solution basis for this equation.

T ~ E O ~ E M 10. Let

y" + ( - a + b p ( x ) ) y = O, (L)

with p (x) real almost periodic, belong to the interior o/the disconjugacy domain D. Then there is a solution basis o/ the /orm

x

yu(x) = e ~x exp f ~ u ( t ) d t

0

y L ( x ) - e - ~ e x p f c L ( t ) d t ,

o

where ~ > 0 and ~u (x), ~L (x) are almost periodic /unctions o/ mean zero. Also 2 ~ is mean o/ the width o/the band o~ bounded solutions o/ the associated Riccati equation and i" [~u (t) +

0

~L (t)] dt is almost periodic. Thus Yu (x) Yn (x) and its reciprocal are almost periodic.

Proo/. L e t uu(x) a n d uL(x) be the u p p e r ~nd lower almost periodic solutions of t h e Ricc~ti equation. T h e n define

X

y u ( x ) = e x p f u u ( t ) d t ~nd y L ( x ) = e x p f u L ( t ) d t .

0 0

These are clearly linearly i n d e p e n d e n t a n d thus form the required basis.

N o w uu(x) = ~ + ~ ( x ) , uL(x ) - :XL + eL(X) where (~u(X), ~L(x) are almost periodic with m e a n zero. T h e width of t h e b a n d B of b o u n d e d solutions of t h e l~iccati e q u a t i o n is

A ( x ) - u ~ ( x ) - u L ( x ) W

y ~ (x) yL (x)'

where the W r o n s k i a n W = y'~ (x)yL(x) yL (x) y~(x) is ~ non-zero constant. Therefore r

0 < c < y~(x)yL(x) < C for bounds c, C a n d for all x.

However, yu(x)yL(x) = exp {(:% + ~L)x + f [ r + r Since y , ( x ) y L ( x ) is

0

b o u n d e d as indicated, gu = - ~ L =Cr a n d t h e ~lmost periodic function A(x) has ~ m e a n of 2 ~ - 0 . Thus yu(x)yL(x) a n d its reciprocal are ~lmost periodic. B u t this means t h a t

i [ r + r is b o u n d e d a n d thus almost periodic. Q.E.D.

O

(14)

112 L A W R E : N C E M A R K U S A N D R I C H A R D A . M O O R E

C O R O L L A R Y 1. y~(X) (or yL(x)) is the unique (up to a constant factor) solution of (L) bounded on a negative (or positive) half-axis. Also i/ the product o/ two solutions o/ (L) is bounded, then the factors are (up to constant multiples) y~(x) a m d yL(x).

f 3"

I f c~(t)dt a n d f c L ( t ) d t a r e b o u n d e d , t h e n t h e y a r e e a c h a l m o s t p e r i o d i c . I n t h i s

0 0

e a s e t h e c a n o n i c a l s o l u t i o n basis h a s t h e f o r m

y~(x) = ~ F ~ ( x ) e ~x, yL(x) =uf~L(x)e ~x,

w h e r e tF~,(x) a n d ~ L ( X ) a r e a l m o s t p e r i o d i c f u n c t i o n s . M o r e o v e r o n e s h o w s e a s i l y t h a t

x 5r

b o t h t h e i n t e g r a l s f ~ ( t ) d t , f ~L(t)dt a r e b o u n d e d if o n e of t h e m is b o u n d e d .

0 0

2$

C O R O L L A R Y 2. There is a solution basis /or ( i ) of the form r e x p f dt/r 2, 0

r c x p f-dt//q~(t) 2, where r (x) is almost periodic and O < c < q ~ ( x ) < C .

~)

Proof. D e f i n e z(x) b y y ( x ) = t y~(x)yc(x)z = r w h e r e y(x) is a s o l u t i o n of (L.) T h e n w e c o m p u t e

(r ( x ) ~ ' ) ' - 4 ~ ( ~ ) ~ ~ = 0, W

9 t

w h e r e we c a n t a k e t h e W r o n s k i a n W = YuYL -YLY~ = 2. B u t t h i s e q u a t i o n c a n be s o l v e d e x p l i c i t l y t o y i e l d s o l u t i o n s e x p i -+ dt/cP (t)2" Q . E . D .

0

W e n e x t e x p l i c i t l y list c e r t a i n d a t a o n t h e m e a n s of t h e a l m o s t p e r i o d i c f u n c t i o n s d e s c r i b e d a b o v e .

C O R O L L A R Y 3 . m e a n [u,, (x) - u L (x)] = 2 m e a n u u (x) 2 = m e a n u L (x) 2 m e a n r (x) 2 = m e a n e L (x)~

m e a n r ( x ) - 2 = ~.

I[ mean p (x) = O, then ~2 + mean r (x) 2 = a and thus [mean d?~ (x)] 2 ~ a - ~ z , i = L o r u .

Proof. I n t h e t h e o r e m w e s h o w e d t h a t m e a n [u~ (x) - u L ( x ) ] = m e a n A (x) - 2 ~. N o w m e a n u~ (x) 2 = m e a n [~2 + ~ r (x) + r (x) 2] a n d m e a n u z (x) 2 - m e a n [:r + ~ r (x) + e L (x)2] 9 T h e n since m e a n Cu (x) - m e a n e L (x) = 0, m e a n [u u (x) 2 - uL (x) 2] = m e a n [r (x) e - e L (x)2] 9

t !

B u t u~(x) 2 - uL(x) 2 = u i . ( x ) - uu(x) w h i c h h a s a z e r o m e a n . N o w r - 2 - A ( x ) / W - A ( x ) / 2 a n d t h i s h a s a m e a n of ~.

(15)

O S C I L L A T I O N A N D D I S O O N J U G A C Y F O R L I N E A R D I ] ~ F E R E N T I A L E Q U A T I O N S 1 1 3

F i n a l l y f r o m t h e R i c e a t i e q u a t i o n

r § + r + b p ( x ) ) = 0 .

T a k i n g m e a n s one o b t a i n s ~2 + m e a n r (x) 2 - a = 0. Since [ m e a n r (x)] 2 < m e a n r (x) 2 one also has [ m e a n r 2 < a - ~2. Q . E . D .

F o r t h e e q u a t i o n (L) i n t e r i o r to D we s a y t h a t t h e n u m b e r s (~, - ~) a p p e a r i n g in t h e c a n o n i c a l s o l u t i o n s of T h e o r e m 10 a r e t h e c h a r a c t e r i s t i c e x p o n e n t s [10] of (L). T h e y s a t i s f y t h e u s u a l d e f i n i t i o n of c h a r a c t e r i s t i c e x p o n e n t s in t h a t

lim sup - log ] Yu (x) I = ~- 1

X-->~r X

a n d lira sup 1 log [yL(x)[ = - ~.

X-->oo X

U s i n g t h i s d e f i n i t i o n for t h e c h a r a c t e r i s t i c e x p o n e n t s we shall l a t e r s h o w t h a t t h e y a r e zero w h e n (L) belongs to t h e b o u n d a r y of D.

F o r t h e classical case of H i l l ' s e q u a t i o n , t h e s o l u t i o n s are e x p o n e n t i a l f u n c t i o n s m u l t i - plied b y p e r i o d i c functions. The following e x a m p l e shows t h a t t h e difficulties which are m e n t i o n e d in t h e a b o v e t h e o r e m a n d corol]aries do a c t u a l l y arise.

Consider t h e e q u a t i o n

y" + ( - a + b p ( x ) ) y - O , (L)

where a - ~2 _ m e a n Z (x) 2, b - - 1, a n d p (x) 2 :r (x) + Z (x) 2 + Z' (x) m e a n Z (x) ~" T h e n

(:)

t a k i n g ~ > 0 a n d Z (x) = n~ cos , p (x) is a n a l m o s t p e r i o d i c f u n c t i o n w i t h m e a n zero a n d (L) has a s o l u t i o n

y ( x ) = e x p ~ x + 1 sin x = e x p o~x+ z(t)dt .

n = l n 0

)

Since t h e c h a r a c t e r i s t i c e x p o n e n t of 9(x) is ~ > 0, \x~(lim xl ~oZ(t)dt = 0 , t h e e q u a t i o n (L) belongs t o t h e i n t e r i o r of D, of. T h e o r e m 15. T h e n i t is e a s y to see t h a t t h e r e is no s o l u t i o n basis of t h e f o r m e x p { ( - 1)i~x § where :~(x) a r e a l m o s t periodic, i = 1, 2. F o r one

X

would t h e n r e q u i r e t h a t g (x) = c e x p ( e x + :~1 (x)), for c * 0, a n d ~1 (x) = f Z (t) d t which

0

is n o t b o u n d e d . I t is u n k n o w n w h e t h e r such a d i f f i c u l t y can occur if p (x) is, say, a t r i g o - n o m e t r i c p o l y n o m i a l .

LE~aNA. Let

y" + ( - a + bp(x))y = O. (L)

(16)

1 1 4 L A W R E N C E M A R K U S A N D R I C H A R D A . M O O R E

with p (x) a real almost periodic/unction, be in the interior o/ D. Then the characteristic expo- nent :r and the quantities 6 = inf I uu (x) - uL (x) ] (/or the upper and lower almost periodic

- o r

solutions o/ the associated Riccati equation), and # = sup [ uu (x) - uL (x) [ are continuous,

- r 1 6 2

strictly increasing/unctions along each line b = const., as a increases a w a y / r o m the boundary ol D.

Proo]. L e t (ao, bo) lie i n t h e i n t e r i o r of D a n d let u~(x), uL(x ) be t h e u p p e r a n d lower a l m o s t periodic solutions of t h e associated R i c c a t i e q u a t i o n . T h e n A ( x ) = Uu(X ) - u L ( x ) has a m e a n of 2 ~ 0 where cr o is t h e c o r r e s p o n d i n g characteristic e x p o n e n t . B y T h e o r e m 8,

~, 6, a n d # are s t r i c t l y i n c r e a s i n g along t h e line b = const, a n d we n e x t show t h a t t h e y are c o n t i n u o u s f u n c t i o n s .

Consider t h e a l m o s t periodic f u n c t i o n s

wl(x) = tuu(x) + ( 1 - t)uL(x)

a n d w 2 ( x ) = ( 1 t ) u u ( x ) + t u L ( x ) for O < t < l .

T h e n a c a l c u l a t i o n shows t h a t b o t h of these a l m o s t periodic f u n c t i o n s are solutions of t h e e q u a t i o n

w' + w ~ + [ - a o + boP(X ) + t(1 - t)(u=(x) - uL(x)) 2] = 0.

Also w l ( x ) - w 2 ( x ) = ( 2 t - - 1 ) [ u u ( x ) - u L ( x ) ] . T h e n t h e w i d t h Aw(x ) of t h e b a n d of b o u n d e d solutions of

w' + w ~ + [ - a 0 + b o p ( x ) + c ] = 0 , where 0 < c < t(1 - t) inf {u~ - uL) 2, satisfies

- ~ <x<~x~

Aw(x) ~ (2t - 1 ) l u g ( x ) - u L ( x ) ] = (2t - 1)A(x).

F o r a p r e s c r i b e d ~ > 0 choose t so n e a r 1 t h a t A ( x ) - A w ( x ) < s w h e n e v e r c > 0 is sufficiently small. Therefore ~, 6, a n d # are c o n t i n u o u s from below along b = const. B u t w i t h i n a fixed n e i g h b o r h o o d of (a0, bo) , c c a n be chosen i n d e p e n d e n t l y of (a', b0) so t h a t t h e b a n d w i d t h of

w' + w 2 + [ - a' + boP(X)/= 0 a n d t h a t of w' + w e + [ - a ' + c ~ b o p ( x ) / = 0

differ b y less t h a n r Therefore 0r 6, a n d # are c o n t i n u o u s along b = b 0. Q . E . D . THEOREM l l . Let

y" + ( - a + b p ( x ) ) y = 0 , (L)

(17)

O S C I L L A T I O N A N D D I S C O N J U G A C Y F O R L I N E A R , D I F F E R E N T I A L E Q U A T I O N S 1 1 5

/or a real almost periodic p (x), belong to the interior o/ D. On the interior o/ D the real/unc- tions ~ (a, b) and ~ (a, b) are continuous. Let D~, and Eo, be the subsets o/ the interior o/ D wherein ~ > ~o and 5 > do, respectively. Then each D~ and Eo is a convex set which is rela- tively closed in the interior o/ D. Also D ~ (or E~,) is properly contained in the interior o[

Da~ (or E~) whenever 0~ 2 < a-1 (or de < c~1). On the relative boundary o/ D~ (o/Ee) the charac- teristic exponent (the inf lug(x) uL(x) l) is exactly ~ (or 5).

Proo/. L e t (al, bl) a n d (a 2, b2) lie i n D~ (or lie i n Ee). L e t u~)(x), ur be t h e u p p e r a l m o s t periodic solutions a n d u~)(x), u(~)(x) be t h e lower a l m o s t periodic solutions of t h e c o r r e s p o n d i n g R i c c a t i e q u a t i o n s . Consider w= (x) = tu~)(x) + (1 - t) u~)(x) a n d w~(x) = tu(~)(x) + (1 - t)u~)(x) for 0 < t < 1. A c o m p u t a t i o n shows t h a t w~(x) satisfies

w' + w 2 + { - [ t a I + (1 - t ) a 2 ] +[tb~ + (1 - t ) b 2 ] p ( x ) ) } + t(1 - t ) [ u ~ ) ( x ) - u ~ ) ( x ) ] ~ = 0.

T h u s t h e u p p e r a l m o s t periodic solution of

w' 4- w 2 =-{ --[ta x + (1 --t)a2] +[tb t + (1 t)b~]p(x)} = 0 (Rt) lies a b o v e w~ (x). S i m i l a r l y the lower a l m o s t periodic s o l u t i o n of t h e last. e q u a t i o n (Rt) lies below wL(x ). T h u s t h e b a n d w i d t h A t of (Rt) satisfies

A t > t A r l ) ( x ) ~- ( l - - t) A(2J(x).

T h u s Eo is convex. Since m e a n 1/k t = ~t, t h e characteristic e x p o n e n t c o r r e s p o n d i n g to (Rt), D~ is convex.

B y t h e l e m m a , t h e characteristic e x p o n e n t corresponding to a b o u n d a r y p o i n t of D~, i n t e r i o r to D, is e x a c t l y ~. Also on t h e relative b o u n d a r y of E~, inf l uu(x) - u L ( x ) I = 6.

~ r < x - o r

T h u s b o t h D~ a n d E~ are r e l a t i v e l y closed i n t h e i n t e r i o r of D. T h e enclosure relations m e n t i o n e d i n t h e t h e o r e m are t h e n e l e m e n t a r y .

F i n a l l y we verify t h a t e(a, b) a n d d (a, b) are c o n t i l m o u s on t h e interior of D. B u t this follows easily from t h e enclosure a n d c o n v e x i t y conditions. Q.E.D.

One can f u r t h e r describe D~ b y n o t i n g t h a t it m u s t c o n t a i n t h e sector b o u n d e d b y t h e r a y s

a = cr '~ -~ b inf p (x)

a n d a = cr 2 " b sup p(x).

o o < x < ~

Similarly Es m u s t c o n t a i n t h e sector b o u n d e d b y t h e rays a = 6 2 + b inf p(x)

a n d a = b 2 + b sup p (x).

S -- 563802. Acta mathematica. 96. I m p r i m 5 le 23 o c t o b r e I956.

(18)

1 1 6 LAVCRENCE M A R K U S A N D R I C H A R D A. M O O R E

Also each domain D~ and E~ is invariant under translations, and even limits of such, of the equation (L).

Later, cf. Theorem 14, we shall show t h a t (~-+0 near the boundary of D and thus t h a t each E~ lies interior to D. However, although it is very likely true, we have not been able to show t h a t :r near the boundary of D.

We conclude this section with a result for a forced or non-homogeneous differential equation.

THEOREM 12. Let

y " + ( - a + b p ( x ) ) y = O, (L) where p(x) and p' (x) are real almost periodic /unctions, lie interior to D. I / /(x) is almost periodic, then the equation

y " + ( a + b p ( x ) ) y - /(x) (F) has a unique bounded solution and this is almost periodic.

P r o @ Since the homogeneous equations (L*) have no (non-trivial) bounded solutions, (F) has at most one bounded solution. Moreover, b y F a v a r d ' s theory [5, Ch. 3], if there is a bounded solution y(x) for which y'(x) is also bounded, then y(x) is almost periodic.

A solution basis for the homogeneous equation is qS(x)exp i -+ dt//r (t)2 where r is

0

almost periodic and 0-~'-c < r C. Construct the Green's function

G(x,~) r 1 6 2 dt t

2

Consider the solution of (F) given b y

y(x) = ~ G(x, ~)/(~)d~.

o o

Tile integral exists s i n c e / ( x ) is bounded and G(x, ~) has au exponential decrease at both

-t- c<).

From the definition of q~(x), cf. Corollary 2 of Theorem 10, we see t h a t ~b'(x) and

~ " ( x ) are also almost periodic. Then one can differentiate tile expression for y(x) to see t h a t y(x) is a solution of (F).

Since y(x) and y" (x) are bounded, so is y' (x) bounded, as is required. Q.E.D.

(19)

O S C I L L A T I O N A N D D I S C O N J U G A C Y F O R L I N E A I ~ D I F F E R E b [ T I A L E Q U A T I O N S 117

4. Boundary of the disconjugacy domain

W e first give a c r i t e r i o n for d i s t i n g u i s h i n g b e t w e e n t h e i n t e r i o r a n d t h e b o u n d a r y of D b y t h e b e h a v i o r of t h e s o l u t i o n s of (L).

T t t E O R E ] g 13. Let

y" + ( - a + b p ( x ) ) y = O, (L)

where p (x) is real almost periodic, be disconjugate. T h e n (L) belongs to the interior o/ D i/ and only i/ there is a solution basis y ~ ( x ) y L ( x ) o/ (L) /or which 0 < y u ( x ) y L ( x ) < C.

Proo/. I f (L) lies i n t e r i o r t o D, t h e n b y T h e o r e m 10 t h e r e is a s o l u t i o n basis of t h e r e q u i r e d t y p e .

C o n v e r s e l y let yo(x), Yl (x) b e a basis whose p r o d u c t is b o u n d e d , as a b o v e . T h e n t h e f u n c t i o n s Uo(X ) = y o ( x ) / y o ( x ) a n d u l ( x ) = y~ ( x ) / y l ( x ) are s o l u t i o n s of t h e a s s o c i a t e d R i c - c a t i e q u a t i o n

u' -+- n ~ + ( - a + b p ( x ) ) - O. ( R)

L e t us w r i t e u l ( x ) > u 0(x) a n d u l ( x ) - u o ( x ) > 2 / C . Consider t h e f u n c t i o n w ( x ) =

~-[u I (x) - u 0 (x)]. A c o m p u t a t i o n y i e l d s

w' + w 2 + ( - a + bp (x)) + 88 [u 1 (x) - u o (x)] 2 = 0.

T h u s t h e e q u a t i o n w' + w ~ + ( - a + b p ( x ) ) § 1 / C 2 - 0

has a b o u n d e d solution. T h e r e f o r e y" + ( - a + b p (x) + 1 / C 2)y - 0 is d i s c o n j u g a t e a n d (L) lies i n t e r i o r to D. Q . E . D .

COROLLARY. I n the interior o / D no (non-trivial) solution o / t h e corresponding linear di//erential equation (L) has a square which is bounded. However, i/ on the boundary o/ D, the product o/ two positive solutions o/ (L) is bounded (even only positive with a bounded product on a hall-axis), then the two solutions are linearly dependent.

W e can n o w c o m p l e t e t h e discussion of (~(a, b) which was b e g u n in T h e o r e m 11.

TI-IEOREM 14. Let

y " + ( - a + b p ( x ) ) y = 0 , (L)

where p (x) is real almost periodic, belong to D. T h e n on the boundary o/ D lim inf I uu (x) - uL (x) I = 0

X - ~ • r

/or any two (possibly coincident) bounded solutions o/ the associated Riccati equation (R).

There~ore ~ (a, b) = 0 on the boundary o/ D and/urthermore (5 is continuous on all o/ D.

* -- 5 6 3 8 0 2 .

(20)

1 1 8 LAWRE:NCE M A R K U S A N D R I C H A R D A. M O O R E

Proo/. S u p p o s e t h e p o i n t (ao, bo) y i e l d s a p o i n t i n t e r i o r to D b u t (a 0 - ~ , b0) for a c e r t a i n e > 0 y i e l d s an o s c i l l a t o r y e q u a t i o n (L). If, for (a0, b0), t h e w i d t h of t h e b a n d for t h e a s s o c i a t e d R i c e a t i e q u a t i o n is A ( x ) ~ 2~"~, t h e n t h e p o i n t (a 0 - ~ , b0) lies i n t e r i o r t o D, as follows f r o m t h e c a l c u l a t i o n occuring in t h e proof of T h e o r e m 13. T h e r e f o r e 2~ (x~ < 2 ~"v for s o m e x a n d c~-->0 n e a r t h e b o u n d a r y of D.

N o w for (a, b) on the b o u n d a r y of D, t h e b a n d for t h e a s s o c i a t e d R i c c a t i e q u a t i o n n l u s t lie i n t e r i o r t o t h e b a n d for (a + e, b), v > 0. B u t for t h e w i d t h A~ (x) of t h i s b a n d one has lira inf A~(x) - 5(a + e, b). Since (~(a + c, b ) ~ 0 as ~ - + 0 , as we h a v e t h e d e s i r e d result.

Q . E . D .

W e n e x t t u r n to t h e p r o b l e m of c o m p u t i n g t h e c h a r a c t e r i s t i c e x p o n e n t ~ on t h e b o u n d a r y of D.

T H E O R E M 1 5 . Let

n' + u 2 ~ ( - a + - b p ( x ) ) - O , (R)

/or real almost periodic p (x), correspond to the boundary o/ D. I/<~ solution o/ (R) is almost periodic, it must have zero mean. Also there can be at most one almost periodic solution o / ( R ) . Proof. L e t u ( x ) be a n a l m o s t p e r i o d i c s o l u t i o n of (R) a n d s u p p o s e m e a n u (x) = ~ > 0.

C o n s i d e r t h e a u x i l i a r y e q u a t i o n

z' - 2 u ( x ) z - 1.

T h e n a solution is z(x) = f [exp f 2u(s)ds]dt, which is b o u n d e d on a r i g h t half-axis,

s a y x > 0. Define w(x) by z ( x ) = - w ( x ) e x p f u(t)dt. A n e a s y c o m p u t a t i o n shows t h a t

0

w(x) is a p o s i t i v e s o l u t i o n of

y" ~ ( - a + b p ( x ) ) y - 0 . (L)

B u t t h e n t h e p r o d u c t of t w o p o s i t i v e s o l u t i o n s of (L) is b o u n d e d on a r i g h t h a l f - a x i s a n d , b y t h e C o r o l l a r y t o T h e o r e m 13, t h e y m u s t be l i n e a r l y d e p e n d e n t solutions. B u t t h i s is i m p o s s i b l e since / u ( s ) d s - + § c~ as x ~ o c a n d so w(x)-~O as x - + c ~ . F r o m t h i s c o n t r a -

0

d i c t i o n we c o n c l u d e t h a t m e a n u ( x ) ~ O.

A s i m i l a r c o n t r a d i c t i o n arises f r o m t h e s u p p o s i t i o n t h a t m e a n u ( x ) < 0 . H e r e one uses t h e f u n c t i o n

z 1 (x) [exp ~ 2~ (s)ds]dt

cr t

(21)

O S C I L L A T I O N A N D D I S C O N J U G A C Y F O R L I N E A R D I F F E R E N T I A L E Q U A T I O N S 1 1 9

which satifies t h e same a u x i l l i a r y e q u a t i o n , a n d which is b o u n d e d on a left half-axis.

A g a i n define w l ( x ) b y zl(x ) =Wl(X) exp f u ( t ) d t a n d observe, t h a t w l ( x ) is a positive

0

solution of (L). T h e n t h e same r e a s o n i n g as i n t h e earlier case shows t h a t m e a n u(x) - 0 . If there were two a l m o s t periodic solutions of (R) t h e n these differences would be a positive a l m o s t periodic f u n c t i o n of zero m e a n a n d this is impossible. Q . E . D .

COROLLARY. Let y(x) be a positive solution o/ (L), /or the boundary o/ D,

such that u ( x ) - y ' ( x ) / y ( x ) is almost periodic. Then the characteristic exponent lira sup ( l / x ) log l y ( x ) ] - 0.

X-~cx~

T h e following e x a m p l e shows t h a t a n e q u a t i o n (L) on t h e b o u n d a r y of D need n o t h a v e a (non-trivial) b o u n d e d solution. Our e x a m p l e does h a v e a s o l u t i o n y(x) > 0 such t h a t y' ( x ) / y ( x ) is a l m o s t periodic. W h e t h e r or n o t there is always such a s o l u t i o n i n this s i t u a t i o n is u n k n o w n . W e shall h a v e f u r t h e r c o m m e n t s o n this d i l e m m a later.

Consider y" ~ [ - Z (x) 2 , Z' (x)] y = 0 where Z (x) = ~ -1 - cos ' x Here t a k e a =

n :: 1 n 2 , n . "

m e a n Z (x) 2, b - 1, p (x) - - X (x) ~ - Z' (x) § m e a n X (x) 2. T h e e q u a t i o n is d i s c o n j u g a t e since a positive solution is y(x) = exp i X (t)dt" Since lim sup (1~Ix) log y(x) = m e a n X(x) = 0, t h e

0 X-->vr

e q u a t i o n belongs to t h e b o u n d a r y of D. W e also n o t e t h a t lim sup y ( x ) - ~ oo, lira inf y (x) - 0.

If Y ( x ) were a b o u n d e d solution, say Y ( x ) > 0 for x > x o, t h e n 0 < Y ( x ) < cy(x) for x > x 0 a n d a c o n s t a n t c. B u t t h e n lim inf W ( x ) = 0 where W ( x ) is t h e W r o n s k i a n of Y ( x )

z->r

a n d y(x). However, W(x) is c o n s t a n t . T h u s there are no (non-trivial) b o u n d e d solutions.

T h e n e x t t h e o r e m shows t h a t one can always o b t a i n a b o u n d e d s o l u t i o n for (L) on t h e b o u n d a r y of D, m e r e l y b y t r a n s l a t i n g to a l i m i t e q u a t i o n (L*).

THEOREM 16. Let

y " + ( - a + b p ( x ) ) y = O, (L)

where p ( x ) and p' (x) are real almost periodic /unctions, belong to the boundary o/ D. Then there exists p* (x) C H { p (x)} such that

y" §

(

- a + bp* (x))y = 0 (L*)

has a positive bounded solution.

Proo/. F o r each g > 0 a solution basis yl (x), y2(x) o f y " -i- ( - a § bp(x) - e)y - 0 yields a general solution

Odkazy

Související dokumenty

Many of the results known for holomor- phic almost periodic functions on tube domains, e.g., Bohr’s approximation theorem (Theorem 1.1), on some properties of almost periodic

Che, Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, Nonlinear Anal. Dong, Periodic boundary value

P˚ uˇza, On the solvability of boundary value problems for systems of nonlinear differential equations with deviating arguments.. Diffe- rential

and Partsvania, N., Oscillation and nonoscillation criteria for two- dimensional systems of first order linear ordinary differential equations, Georgian

Many results about the existence and approximation of periodic solutions for system of non–linear differential equations have been obtained by the numerical

These articles are concerned with the asymptotic behavior (and, more general, the behavior) and the stability for delay differential equations, neu- tral delay differential

For such equations, persistence and permanence of solutions of a class of nonlinear differential equations with multiple delays were first studied in [3].. Our manuscript extends

Alkhazishvili, Formulas of variation of solution for non- linear controlled delay differential equations with discontinuous initial