• Nebyly nalezeny žádné výsledky

y+kf(y)y+g(y)=bkp( ), ON NON-LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER: IV. THE GENERAL EQUATION

N/A
N/A
Protected

Academic year: 2022

Podíl "y+kf(y)y+g(y)=bkp( ), ON NON-LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER: IV. THE GENERAL EQUATION"

Copied!
110
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

ON NON-LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER: IV. THE GENERAL EQUATION

y+kf(y)y+g(y)=bkp( ),

B Y

J. E. LITTLEWOOD

in Cambridge

w t . W e e n t e r n o w on o u r c o m p l e t e a c c o u n t of t h e m o r e general e q u a t i o n ij+kit(y)~+g(y)=bkp(q~), ~ = t + ~ .

T h e f u n c t i o n s i t, g, p are fixed, b is n o n - n e g a t i v e , a n d k is large a n d positive. W e proceed t o s t a t e t h e long list of a s s u m p t i o n s a b o u t it, g, p. I t m a y h e l p t o w a r d s easier r e a d i n g t o i m a g i n e t h a t it a n d g are p o l y n o m i a l s a n d p a t r i g o n o m e t r i c a l p o l y n o m i a l : in so f a r as h y p o t h e s e s a b o u t t h e s m o o t h n e s s of f, g, p a r e concerned o u r a r g u m e n t s are n o t essentially different f r o m w h a t t h e y w o u l d t h e n be, a n d the r e a d e r m a y t r u s t us to h a v e t a k e n care of t h e details. H e m a y similarly t a k e on t r u s t details a b o u t t h e c o n s t a n t s c o n n e c t e d w i t h these functions, a n d t h e v a r i o u s a p p e a l s t o t h e ], g, p d i c t i o n a r y (w 3) t h a t occur in t h e a r g u m e n t s .

p h a s continuous p " , is periodic w i t h period n o r m a l i z e d to 2 zt, has m e a n v a l u e 0, a n d is s k e w - s y m m e t r i c , i.e. p (z~ + ~ ) = - p (~). A n y integral f p dq~ is periodic; we define Pl (~) be t h a t one for which t h e m e a n v a l u e is 0. I t also is s k e w - s y m m e t r i c . I t is n o w a n essential a s s u m p t i o n t h a t Pl attains its upper (and consequently also its lower) bound once only in a period. W e n o r m a l i z e p t o m a k e 1 t h e u p p e r b o u n d of Pl, to be a t t a i n e d a t ~ g. So Pl (~ zt) = - pl ( - ~ ze) = l, p ( + ~ 7t) = 0. p ' ( - ~ 7t) is n o n - n e g a t i v e ; we suppose it a positive c o n s t a n t a 2.

it(y) is even, w i t h continuous it". I t has a single p a i r of zeros, n o r m a l i z e d t o +__ 1; /' (1) is a positive c o n s t a n t al, a n d it has a positive lower b o u n d in (say) y_>2.

y

W e define F ( y ) = f i t ( y ) d y ; F is odd. W e n o r m a l i z e ] to m a k e F ( - 1 ) ( c e r t a i n l y

0

positive) ~. This will m a k e ~ t h e critical v a l u e of b, as for v a n der P o l ' s e q u a t i o n ; t h e b e h a v i o u r for b > ~ is crude, a n d we suppose for s i m p l i c i t y t h a t 0 < b < 2 as before.

1 -- 573805, Acta mathematica. 98. I m p r i m 6 le 19 n o v e m b r e 1957.

(2)

2 J . E . LrL-rLEWOOD

W e define H , a c o n s t a n t > 1 , b y F ( H ) = F ( - I ) = ~ . 1

T h e final a s s u m p t i o n s a r e a b o u t g: we suppose it odd, w i t h c o n t i n u o u s g". W e should in a n y case suppose t h a t g" h a s a positive lower bound. I n o r d e r to a v o i d c e r t a i n complications we s u p p o s e g'>_ 1. 2

w 2. C o n s t a n t s L are t h r o u g h o u t positive c o n s t a n t s d e p e n d i n g o n l y on t h e func- tions [, g, p, a n d t h e c o n s t a n t s implied in O's are a l w a y s of t y p e L.

Before going on we s t a t e t h e essential

L E ~ M A 1. Suppose (as always) that O<_b <_2. T h e n every trajectory F ultimately satisfies

lYl<_L ',

where we m a y suppose L~' > 20, say. a I f it satisfies these at t = t o, then it will satisfy

lyI-<L *, I l<_L*k re, t>_to.

I / b > O, F (strictly) crosses y = 0 infinitely often.

This is p r o v e d (for still m o r e general [, g, p) e l s e w h e r e )

w 3. I n t h e light of L e m m a 1 we define, slightly e x t e n d i n g t h e n a t u r a l m e a n i n g of the adjective, a n " e v e n t u a l " F t o be one satisfying I Y l <_ L~, I Y l <_ L~ k a t t h e ( a r b i t r a r y ) origin of t i m e t = 0. I t t h e n satisfies I Y [ <_ L*, I Y l <- L* k for t >_ 0.

W e m a y o b s e r v e t h a t this u l t i m a t e b e h a v i o u r holds (for a suitable L~ a n d L*) s u b j e c t to v e r y general conditions on [, g, p.4 Once g r a n t e d this, it is e n o u g h for o u r f u r t h e r p u r p o s e s t h a t t h e m o r e s t r i n g e n t conditions we i m p o s e on f, g, p should hold in t h e r e s t r i c t e d r a n g e l Y I -< L*.

W e give for convenience of reference a " d i c t i o n a r y " of f, g, p.

L EMMA 2. p ( ~ ) s has continuous p " . I t has period 2 rc and m e a n value O, and p (q) + ~z) = - p (q~). Pl (q)), the integral of p with mean value O, has Pl (~ § ~z) = - Pl ((P).

= 1 and nowhere else, and attains its pl attaius its upper bound, which is 1, at q ~ - - ~ ,

lower bound - 1 at ~ ~ - - 1 ~ and nowhere else.

p ( - F ~ : ~ ) = O , p , ( _ _ _ l ~ ) = ~ a s , a z > O ; p l ( • _ 1 . (1)

i In v a n der Pol's equation this critical height H has the value 2. We choose to normalize the critical b to -~ rather than H to 2.

s Since the period is normalized to 2 :r this is a real restriction on one parameter of the equa- tion a n d m a y be unnecessary. W e could alternatively a s s u m e that ]' > 0 in 1 < y < H .

3 Constants with *'s (and with or without suffixes) are p e r m a n e n t (see w 4 below).

4 See M. L. CARTWRIOHT and J. E. LITTLEWOOD, Ann. o/ Math., 48 (1948).

5 ~ is the phase, and is of the form t +r162 since the period is 2x~. We work sometimes in ~, sometimes in t. We have of course

p' = d p/dg~ = d p/dt = p.

(3)

THE GENERAL EQUATION ~ "~- ~ / (y) y § g (y) = b k p (q~), (p = t § ~r 3

- I

Fig. 1. Graph of: P (y).

F o r ] ~ ] < ~ we have

Ip(-~+~)l<_Ll~l,

(2)

l + p l ( - ~-:~ + yJ) = 1 a2~p~ + 0(y~a ), (3) Lye2_< 1 + P l ( - ~ r~ + YJ)-< Lv2 ~, (4) with corresponding results /or Pl (~ g + v2) = - Pl ( - 89 rc + v2).

/ is even, with continuous /". g is odd, with continuous g".

/(+1)--o, ~ ( T 1 ) = +~, / ' ( + 1 ) = + a . a~>O. (5)

F ( H ) = F ( - D -~ H > I . (6)

y = l + ~ ; / ( y ) = a ~ + O ( ~ ~) ([y]_<L*); ~ ( y ) / ~ L (O<_y<_L*). (7)

$ ' ( y ) - F ( 1 ) = ~ a ~ y ~ + O ( ~ 3) (lyl_<L*);

$ ' ( y ) - F(1) >_0 (y_> - H ) ; (8)

L ~ 2 < _ $ ' ( y ) - F ( 1 ) < _ L ~ ~ ( - ~ ( I + H)<_y<_L*);

g" is continuous, and 1 <_ g' <_ L*, /or I Y l <- L*. (9) (1) is agreed, and (2), (3) follow from (1) and the continuity of p". The second inequality in (4) is a trivial corollary of (3); the first, however, depends on the fact that the lower bound P l ( - ~ ) is attained at ~ - - - ~ only.

The results about / and F are either agreed, or simple consequences of ( 5 ) a n d the continuity of /". (9) is agreed.

w ~. N o t a t i o n f o r u p p e r b o u n d s . W e use L (as we said above) for positive constants depending only on the functions /, g, p; and we use A (x, y . . . . ) for positive

(4)

4 J . E . LITTLEWOOD

constants depending only on these functions and the x, y . . . . I n the rather rare cases when A is used as an index [as log Ak, or /c -A] it means a positive absolute con- stant. We use D for constants A (~) depending on a J whose rSle is similar to t h a t of the ~ in the Introduction 1 (w 12). This ~ is to be t h o u g h t of as "small": it has in the end to be less t h a n some definite L; we suppose always, a n d tacitly, t h a t ~ satisfies a n y inequality J < L called for b y the run of the argument. Each L, D, A (), as it occurs will in general depend on previously occurring ones; the chain, e.g., of D ' s could be made one of explicitly defined constants.

Many L ' s and /)'s do n o t need identification. Where t h e y need identification throughout a single argument we use temporary suffixes, restarting the suffixes again a t 1 on the next occasion. We sometimes use dashes in the same w a y (when suffixes are too thick on the ground). Where constants need permanent identification we use stars (as well as suffixes): thus D~ (w 20) is always the same D. Suffixes to things other than constants L, D are used in m a n y distinct senses; we hope t h a t these are sufficiently disparate not to be confused; our notational problems are very dif- ficult.

The upper bounds implied in O's are always L's.

We have to employ Lemmas with undetermined non-negative or positive con- stants d, d'; these are blank cheques, constants chosen in different ways on different occasions; when chosen, t h e y m a y be 0, or L, or D, b u t are always one of these.

The assertions of the Lemmas, which involve such things as A (d, d'), k o (d, d'), con- sequently involve D's at worst, when t h e y actually come to be applied. (Indeter- minate constants other t h a n d, d' are sometimes used, b u t only temporarily and with ad hoc explanations.)

The constant b requires some discussion. I t is always (as explained in w 1) subject to 0_< b_<2, and for some results no restriction other than this is necessary. B u t both b = 0 and b = ~ are generally critical, and bounds of various things depend on the nearness of b to 0 or ~. Behaviour when b = 0 has considerable interest of its own, and our first intention was to introduce a second "5", ~', and a hypothesis b ~> J ' in the relevant contexts. B y leaving the orders of J and ~' independent we should arrive at results which were at least pointers to the case of small b (the real answers probably require such b to be a function of k). The complications of having more than one ~, however, proved almost prohibitive, and we adopted the simplifica- tion of making all 5 the same. I t turned out in the end, however, t h a t even the 1 See Paper I I I Acta Math. Vol. 97 (1957). This paper will be referred to in future as the In- troduction. Both papers ~re based on joint work with M. L. CAItTW~IGHT.

(5)

THe. G~.~.RAL ~.QUATIO~ ~ + k f (y) ?~ + g (y) = b k p (q), q = t +

a s s u m p t i o n b > (~ ( ~ ' = (~) led t o a v e r y g r e a t increase of c o m p l i c a t i o n ; a n d our final h y p o t h e s i s (where t h e critical values 0, ~ are relevant) is b E B, where B is t h e range

1-~0_<b < - 2 - ~ - a 1 0 o . ( 1 )

W e r e g r e t this m a s k i n g of b e h a v i o u r for small b, b u t it seems t h e lesser evil.

W h e n b E B a n A (b) or A (b, ~), if c o n t i n u o u s in b, as it a l w a y s is in practice, lies between t w o L ' s or D ' s respectively.

T h e dependence of ko=ko(x, y . . . . ) on c o n s t a n t s (of. I n t r o d u c t i o n w167 5, 9 ) r e q u i r e s o n l y a s h o r t explanation, k 0 (x, y . . . . ) is a l w a y s an A (x, y . . . . ) a n d depends o n l y on /, g, p a n d t h e x, y . . . W h e r e we h a v e Lemmas containing ( u n d e t e r m i n e d ) d ' s t h e k 0 n a t u r a l l y depends on thes d's. T h e k0's of Theorems generally d e p e n d on (~, b u t never on u n d e t e r m i n e d p a r a m e t e r s (which T h e o r e m s never contain).

A k o in a L e m m a or T h e o r e m is " s u f f i c i e n t l y large". I t has to be continually re-chosen as t h e argument, proceeds. Suppose, for example, we h a v e p r o v e d X < D 1 k -89 where k > k o. W e t h e n have, e.g., X < k -~ for k > k0, where k 0 = m a x (ko, D~), a n d s a y

" X < D l k - i < k -89 b y re-choice of k0". I t would be intolerable to m e n t i o n all t h e re- choices, and, once h a v i n g directed a t t e n t i o n s t r o n g l y t o t h e point, we shall more a n d m o r e f r e q u e n t l y suppose t a c i t l y t h a t a n y n e c e s s a r y rechoice is being made.

w 5. W e n o w seriously begin our long a n d intricate story, which, after t h e literary excursions of t h e I n t r o d u c t i o n , we shall n o t t r y to lighten. W h a t we h a v e a i m e d a t is to m a k e things as e a s y as m a y be for a reader who omits t h e proo/s of t h e L e m m a s (or m e r e l y skims t h e m for t h e general idea) a n d c o n c e n t r a t e s o n their s t a t e m e n t s (and of course t h e connecting explanations). W e have t a k e n pains t o m a k e t h e chain of s t a t e m e n t s as lucid a n d efficient as we can. E a c h L e m m a of t h e chain, further, has a l m o s t a l w a y s a self-contained p r o o f ; clumsinesses t h a t h a p p e n inside these proofs do n o t c a r r y over outside. P a r t of t h e plan is to collect all n e e d e d results of a similar k i n d into one L e m m a a t a time, a n d some of t h e L e m m a s are long " d i c t i o n a r i e s " .

~ 6 . L E M M A 3. (i) Let 0 _ < b < 2 , and let d be a non-negativeand d' a positive constant. Then there is a ]co(d, d') such that when k>_ko, the /ollowing properties hold.

Suppose that an eventual trajectory has a piece X Y Z lying entirely in y >_ 1 - d k-89 suppose also that (a) X Y has time length at least d', (b) Y Z contains a point at which

~ _ _ 1 ~ , (c) Y Z has time length at least k-89 log k. Then /or any Q o/ Y Z,

(6)

J. E. L I T T L E W O O D

I ~ l < A ( d , d ' ) ,

I n the identity

l i j l < A ( d , d ' ) k t , I i j l < A ( d , d ' ) k ;

~] = b p (q)) + 0 (A (d, d') k-t);

~)f=bp(qJ) + O(A (d,d') k - l [ y - l [-1).

(1) (2) (3)

t

E _ F ( 1 ) = C + b ( l + p l ( q ) ) _ k - l f g d t _ ~ k -1 (4)

0

we may substitute ~= 0 (A (d, d')) in the stretch Y Z .

(ii) Let 0 <b <_ 2, and suppose that d is a positive constant, and that k > k o, where k o is a certain k o (d). Then at a Q that has been preceded by a piece o/ an eventual trajectory lying in y > 1 +d, and lasting a time k -1 log~k at least, we have

l Y I < A ( d ) , ] ? ) l < A ( d ) , I ~ ] l < A ( d ) ;

with various consequences, e.g. (2) is valid with error term improved to O ( A (d) k-l), or

I Y/-- b p @) I < A1 (d) ]r (5)

A]l.~

y= 1 - d k - ~

F i g . 2. Mr, M2, Ma c o r r e s p o n d t o c a s e s (i), (ii), (iii) r e s p e c t i v e l y .

W e a b b r e v i a t e c o n s t a n t s A (d, d') to A.

W e begin b y p r o v i n g t h e result I~)1 < A in (i). On t h e t r a j e c t o r y we h a v e a l w a y s I Y l -< L r I n a n y piece of t h e t r a j e c t o r y of t i m e i n t e r v a l d' I~)l c a n n o t everywhere exceed 2 L~/d'. H e n c e (see fig. 2) t h e r e is a n R of X Y w i t h l YR l < L I d ' . L e t l Yl a t t a i n its m a x i m u m v for R Z a t M . W e m a y in w h a t follows s u p p o s e t h a t v is g r e a t e r t h a n a n y p a r t i c u l a r A t h a t arises, since otherwise we h a v e w h a t we w a n t . (In p a r t i c u l a r we s y s t e m a t i c a l l y reject a l t e r n a t i v e s v < A as t h e y p r e s e n t themselves.) W e suppose a l w a y s v > 1.

W e m a y suppose M n o t a t R ( M = R would give w h a t we want). B y t h e h y p o - thesis a b o u t Y Z, R Z c o n t a i n s a point, S within 2 ~ on one side or t h e o t h e r of M, for which ~s~-- - ~ ~- L e t ~VM~ -- 1 ~ + V2 ' where [~v] _< 2 ~.

(7)

THE GENERAL EQUATION y § k / (y) ~j + g (y) = b k p (~), ~ = t + ~ 7 w 7. W e m a y suppose, b y prolonging Y Z t o t h e n e x t intersection 1 w i t h t h e line y = l - d k - 8 9 t h a t Z lies on this line (the h y p o t h e s e s being satisfied a / o r t i o r i in t h e n e w case). W e h a v e n o w t o distinguish t h r e e cases:

(i) M identical w i t h Z (when YM is n e g a t i v e b y t h e g e o m e t r y a n d YM = --V);

(if) M is n o t Z, y M = - - v ; (iii) M is n o t Z, YM= + v -

I n cases (i) a n d (if) ~M = --V. F r o m t h e ~-identity, writing gl for f g d t , we h a v e

~ls - YM = -- k ( F (Yz) -- F (1)) + k ( F (YM) -- ~ (1)) + b k (Pl (~s) - Pl (~M)) -- [gl] s . T h e l e f t - h a n d side is Ys + v _> 0. On t h e r i g h t t h e first t e r m is n o n - p o s i t i v e b y L e m m a 2 (8); t h e second is n o t g r e a t e r t h a n L k ~ b y L e m m a 2 (8); t h e f o u r t h is less t h a n L since { t s - tMI ~ 2 z . W e have, therefore,

O<-Lk~2M+ bk(P~ (q~s) - P ~ (q~M)) + L.

N O W -- P l (~0S) -~- P l (~M) = 1 § P l ( -- 1:7~ § ~)) ~__ L ~2, b y L e m m a 2 (4). H e n c e

by~<_L~eM+ L k -1 in cases (i) a n d (if). (1) N e x t , in either of t h e cases (if), (iii), M is s t r i c t l y interior to R Z , a n d conse- q u e n t l y ijM= 0; whence b y s u b s t i t u t i o n in t h e differential e q u a t i o n

y M / ( y M ) = b p ( ~ M ) - - g ( y M ) ] ~ -1 i n cases (if) a n d (iii). (2) B y (7) a n d (2) of L e m m a 2, a n d since ~M = - - ~ : ~ + ~ , we h a v e

V l ~ M { < b L { y J [ § L k -~ in cases (if) and (iii). (3) I n case (if) we h a v e (1) a n d (3), a n d so also

v ~ ~ < b2L 2 ~p2 + L 2 k-2 < LbyJ2 + L k - ~ < L (L~2M+ L k -1) + L k -1 < L~2M + L k -~.

Since we m a y suppose v~> 2 L1, this gives

{~M[</k -~,

a n d a /ortiori I~M{ < A k-89 This last inequality, j u s t p r o v e d for case (if), is t r u e also in case (i) (when ~ M = ~ Z = - d E - 8 9 I n either case we n o w h a v e byJ~<A]c -1.

1 This need not happen immediately.

(8)

8 J . E . L I T T L E W O O D

Hence, summing u p :

~ M = - - V,

In cases

(i)

and

(ii) b ~ < A k -1, I ~ l < A k -89

(4)

We continue to t a k e cases (i) a n d (ii) together, and now consider t h e reversed motion (r.m.) from M ; if v is its t i m e variable we h a v e t=~pM--T. The ~i-identity for this r.m. is

dy

dv

v - k ( F (y) - F (1)) + k ( F ( y . ) - F (1)) +

T

D

with y ( 0 ) - - I + ~ M ,

(dy/dv)o=v.

We write

y = y - l = k - t z , v=k- 89 P = P ( z ) =

k ( F (y) - P (1)), Po = P (Zo)- Then P, Po >- 0, z 0 = k 89 ~M > -- A. The differential equation becomes

dz - - = v + P - P o + b k p ( - ~ + v 2 } ~ +O(k~)+O(v).

dx

Now b y (4) a n d L e m m a 2 (2),

bkp(-lz~+v2)=O(k~)=O(k 89

a n d when we sub- stitute from this and for T the last differential equation becomes

dz

d-x = v + P - Po + 0 (Ax) + 0 (A x~). (5) L e t

X=log 89

t h e n

X<Llog 89

a n d (since the r.m. lasts a t i m e k- 89 which corresponds to a range y-1 log k of x, without y reaching L*) (5) has a solution in 0_<x<_X t h a t is bounded b y

L k89

We show n e x t t h a t either v < a certain A, as desired, or else

dz/dx,

initially positive, remains positive t h r o u g h o u t

O<_x<_X.

I f

dz/dx

ever vanishes, let it vanish

[irst

a t x = ~ _ < X ; t h e n in (0,~) z_>z 0 > - A . Now i f z o < 0 , t h e n P - P o > - - P 0 > - A ;

z

a n d if Zo>_0, t h e n

P - P o = f(positive) dz>_O;

in either case

Ze

dz ~ x > V - A - A ~ - A ~ 2 > v - A - A X * > v - A - A l o g

(v + 2),

which is positive a t x = ~ (contrary to hypothesis) unless v < A.

We m a y suppose, then, t h a t

dz/dx>O

and

z>_z o

in (0, X). I n this range we have certainly - 1 < y < L * , and so, b y L e m m a 2 (8),

Lz~ < p < Lz ~.

(9)

THE OE~ERAL v, QUATm~ ?~ + k i t (y) # + g (y) = b k p (~), q = t + 9

I t follows n o w t h a t { L z * - A (z•

P - P 0 > L ( z - Z o ) 2 ( % > 0 ) .

F o r if Z o < 0 , t h e n z o = O ( A ) , P o < A , a n d P - P o > L z 2 - A . I f %>_0, t h e n

(6)

t ' - Po= k f/d,__ k f L,7 e,7,

~M ~M

b y L e m m a 2 (7), a n d so

P - P o >- L k (rl 2 - ~ ) = L (z ~ - z~) > L (z - Zo) 2,

since Z>Zo; a n d this completes t h e proof of (6).

F r o m (5) a n d (6) we h a v e in (0, X) for t h e case z o < 0 d z

- - > v - A - A X - A X 2 + L z 2 > v - A - A log ( v + 2 ) + L z 2,

d x (7)

a n d a similar inequality with L ( z - z0) 2 in place of t h e last t e r m for t h e case z 0 >_ 0.

N o w either v is less t h a n a certain A, as desired, or else (7) gives, in, e.g., t h e

c a s e Z 0 < 0 ,

d Z > ~ v + Lz~,

z f j

a n d t h e n log89 (v + 2) = X = dx <_ v ~ < + < 2 = L v- ~- '

0 zo 0

a n d v < A. I n t h e case z 0 > 0, t h e a l t e r n a t i v e t o v < A is d z

~ x > ~ v + L (z - zo) 2,

a n d t h e rest is m u c h as before.

W e h a v e n o w p r o v e d l Yl < A in eases (i) a n d (ii).

w I t remains to consider case (iii), in which yM=V: here we h a v e to p a y close a t t e n t i o n t o signs (of ~a a n d ~/M).

W e recall t h e i d e n t i t y (2) of w 7 [valid for case (iii)].

YM/(YM) = b p (qJM) -- g (YM) k-l"

This gives, b y L e m m a 2 (7) (whatever t h e sign of

~M)

b p (q)M) < LV~M-~ L k -1, (1)

(algebraically, note) a n d also

(10)

10 J. E. LITTLEWOOD

V I~MI < Lb ]P(q)M)I A-Lk-1,

(2)

< L b l v ] + L k -1, (3)

b y L e m m a 2 (2) (since ~M = -- ~ ~ + v2).

I n t h e ~-identity between M a n d S of w 7 we h a v e now for t h e l e f t - h a n d side

?]s-?/M t h e lower b o u n d - 2 v in place of t h e original 0; t h e conelusiom:(il) of w c o n s e q u e n t l y modified to

b~)2 < i~2M+ L v k -1.

(4)

Combining this with (3) (and using b < L , v > l ) we h a v e v~ ~7~M < L l ~ + L v k -1, a n d unless v 2 < 2 LI, which we c a n reject, we h a v e

v2~2M<Lvk -1, ]~M[ < L ( v k ) -89 (5)

We prove next that either v is less than a certain A (which we reject), or else

~1> 0 /or a time interval k -89 be]ore M . Suppose t h e second a l t e r n a t i v e false; t h e n t h e r e is a s t a t i o n a r y point Z, with ?~=0, a t time v < k -89 before M, a n d we m a y suppose it t h e nearest such p o i n t t o M . T h e p o i n t 5: is in X M (since X M has t i m e - l e n g t h a t least d ' > k - 8 9 hence y ~ > l - d k -~, -dk-89 a n d so ~ _ _ _ ~ + d 2 k -1. Con- s e q u e n t l y

0 - v = ?~= - ~)M = -- k (F (y~) - F (1)) + k (F (YM) -- F (1)) + b k (Pl (~M -- 3) -- Pl (~M)) + [gl] M

> - L k ~ l ~ + O + b k ( - ~ p ( q j M ) - L ~ 2 ) + O ,

b kT p(q)M) > V - L (k~?~M+ A ) + O - b k L k - I + O > v - L v - I - A ,

b y (5). Unless v is less t h a n a certain A, which we reject, this is greater t h a n 89 a n d t h e n

bp (~M) > ~ vk-1 T -~ >-- ~ vk-89 (6)

On t h e other h a n d (1) a n d (5) give

bp (q~M) < Lv89 k-~ + L k -~

which contradicts (6) unless v < L , which we can reject. T h e n ~ > 0 for an interval k -89 before M, as stated.

B y (5) we n o w have, for tM--k-89 <_t <--tM,

- d k - 8 9 < ~ < ~ M < L v - 8 9 k-89 (7)

(11)

b y (1), b y (5), unless v < A.

THE (]ENERAL EQUATION y + k / (y) ?) -{- g (y) = b k p (~0), ~ = t + a 11 T h e ?)-identity b e t w e e n t a n d tM gives

?) = v + k (F (YM) -- F (y) ) + b k (Pl (q~) - Pl (qJM) ) + [gl]~ M

>_ V + k (F (YM) -- F (y)) + b k (t - tM) p (q~M) -- L k (t - tM) ~ + O. (8) W e n o w distinguish t h e cases (i) r / > 0, (ii) ~1 _<0, a n d p r o v e in e a c h case t h a t

?) > ~v a t t h e p o i n t in question (of t h e k -89 interval), or else v < A . YM

I n (i) y~>_y>_l a n d F ( y M ) - : F ( y ) = f / d y ? _ O . Y

I n (ii) ]~l<_dk- 89 a n d so

F ( y M ) - - F ( y ) = (F(yM)-- F ( 1 ) ) - ( F ( y ) - F ( 1 ) ) > - O - L r / ~ , b y L e m m a 2 (8), > - A k -1.

This last i n e q u a l i t y is t h e r e f o r e t r u e in either case, a n d t h e n (8) gives

?) > _ _ v - A - L k . k-89 M a x (0, bp(gM))-- L + O

> _ v - A - L k ~ v ] ~ M I ,

> _ v - A - L y e ,

~lv~

I g n o r i n g t h e v < A alternatives, then, we h a v e ?)> ~ v t h r o u g h o u t t h e t i m e i n t e r v a l k- 89 before M . B u t t h e n a t t i m e t M - k -89 we h a v e

*l <- ~IM-- i r k - 8 9 <_Lv-~ k-~ - ~ vk- 89

T h e l e f t - h a n d side being a t least - d k - 8 9 this leads t o v < A , which is therefore established.

W e t a k e n e x t t h e (easier) proof t h a t l Yl < A k89 on Y Z . L e t X1 be t h e p o i n t of X Y of t i m e h a l f w a y b e t w e e n tx a n d tr. W e h a v e I?)] < A I (say) o n

X1Z

(by t h e ?) result). T h e n we c a n n o t h a v e 1?~[>2hl/(-~d') on t h e whole of X 1 Y (or ? ) w o u l d s o m e w h e r e exceed A1) ; t h e r e is t h e r e f o r e a p o i n t R of X I Y a t which I~al_<A. L e t t h e m a x i m u m of I?Jl for R Z occur a t M . We m a y suppose M n o t a t R, which would give w h a t we w a n t . This t i m e we distinguish t w o cases:

(~) [~/M[_<dk -89 (this includes t h e case M = Z ) , (fl) ~]M>dk -89

I n ease (~) we use t h e fact t h a t t h e r e is a n S of R Z , within 2 ~ on one side o r t h e o t h e r of M , with ~ s ~ - ~ g , a n d then, b y t h e ?)-identity,

(12)

12 J . r . LrrrLv.WOOD b k (1 + Pl (~M)) = b k (Pl (qM) -- Pl (qs))

= ?)M-- ?)S + k (F (YM) -- $' (1)) -- k ( F (Ys) -- F (1)) + [~l]S M

<_A + A + L k ~ M - O + 2 7 e L < A .

B y L e m m a 2 (2) the left-hand side is at least

bkLv22,

where ~M ~ - 1 ~ + v 2 , 1~01_<2~; hence b ~ < A k -1, a n d

b lp(q~M) l < b L l ~l < L(by~2)89 < h k -89

Since

]/(YM)I < L lrl~l < i k -t,

we have

~M=l--k/~-g+bkplM<_lcAk- 89189189

which proves w h a t we want.

I n case (fl) M is strictly interior to

R Z;

consequently y m = 0, or

0 = - - k iyM ] (YM) -- k / ' (YM) ~)~M -- 9' (YM) YI~ +

b k p" (qM).

Since

]/(yM)]>LI~M[>Ak- 89

b y L e m m a 2 (7),

[ {]M I <- A k89 I - ]' (YM) ~l~ -- k-1 g, (y~) ~JM + b p' (~fM) l

< A k 8 9

89

which completes the proof t h a t I Y I < A k 89 for Y Z.

The proof of l Y] < A k is m u c h like t h a t of the ~ result, b u t simpler, since t h e t e r m

bkp"

is crudely

O(k).

We differentiate once more a n d use y~V=0 in one half of the a r g u m e n t (as for ~)): it is this t h a t requires us to assume the existence of continuous second derivatives of /, g, p.X

We h a v e now established (1) of the L e m m a : (2) a n d (4) are immediate conse- quences. F o r (3) we have

1~] = b p ' -

g'y]c -1 - / ' y ~ - y k - 1 = O ( i ) , a n d so

ij=O(A

l Y - 1 I-~), and we have only to substitute this in

? ) / - b p = - g k - l - ~ ] k -1.

This completes the proof of p a r t (i).

w 9. I n p a r t (ii) let T = l o g S

k/k,

a n d consider the r.m. from the point concerned

t

as time origin, over the time 0 < t < ~ . L e t

T = f / d t .

Since

y>_l+d,

we h a v e

] > L d

0

( L e m m a 2 (7)),

T>_tLd.

The r.m. is

1 W e n e e d t h e i n e q u a l i t y for y : it is n o t a l u x u r y .

(13)

or

F r o m (1) we h a v e

and so

ij= k / (y) ~ ) - g + b kp, ~ d-t (Ye-kr) = (b k p - if) e - ~ r . d

y = k / i j § ?)2-g" y §

d t (?/e-~r) = (/c]' Y2 - g ' Y § bIcp) e -kr. d F r o m (2)

t t

~e - ~ - ~)o = f (b k V - g) e - ~ dt = f 0 (k) e - ~ ~t

o o

t

13 (1)

(2)

(3)

= o (k) f e - k ~ d t = o (k) f e -~'L~ d t = o (d-l),

o o

Hence, either ~ o = O ( d - 1 ) , or else

I ~ e k T l > h l y 0 1 > l .

T h e last a l t e r n a t i v e m a k e s [?)1 > c x p (Ld log s k) a t t i m e T, c o n t r a r y t o ?)= 0 (Lk).

T h u s Yo= O(d-1), as desired.

F o r ?)0 we a r g u e similarly f r o m (3), s u b s t i t u t i n g ~ = O ( L d -1) o n t h e right- h a n d side. F o r ~) t h e a r g u m e n t is similar.

This c o m p l e t e s t h e p r o o f of L e m m a 3.

w t 0 . W e t a k e n e x t t h e k e y L e m m a B of t h e I n t r o d u c t i o n , ( L e m m a 5, below) prefacing it b y L e m m a C ( L e m m a 4, below); we r e s t a t e t h e m for convenience ( t h e y are u n a l t e r e d in form, e x c e p t for a n a d d i t i o n to L e m m a B).

L EMMA 4. Suppose Yl, Y~ are respectively solutions o/

~ = O ( y , t ) + Rl.~,

where ~P is continuous in (y, t), RI, u continuous and R I > R ~ /or t>_t 0.

(i) I / now ?/1 (Q) >- Y2 (to), then Yl > Y~ /or t > t o.

(ii) The conclusion is true i/ R 1 > R~ /or t > t o only, provided we know independ- ently that Yl > Y2 /or small positive t - t o.

F o r t h e proof see w 14 of t h e I n t r o d u c t i o n .

1 The argument of p involves - t and a constant, but neither detail affects the reasoning.

(14)

1 4 J , E. LITTLEWOOD

L E M M A 5. Consider the (Riceati) equation, /or x>_O, d z

--=z2-x~+l+~-28x,

z ( 0 ) = 0 , d x

where ~ > _ - 1, and fl [urther satis/ies fl < 0 when a = - 1, so that z is positive/or small positive x.

There is a .B o = flo (~r such that

(i) i/ fl>flo [or O > f l > f l o when r 1 6 2 then z changes sign t o negative at an

x=xo(~, fl)>0;

(ii) i/ fl<flo, then z-->+ oo at an asymptote x = x o ( : c , f l ) > 0 ; (iii) i/ fl =rio, there is a solution in (0, ~ ) for which z > 0 and

z = x + flo + F (x, ~),

where F ( x , ~) is continuous in (x,~)* and F = O ( 1 / x ) as x--->oo.

Further flo (or and ~'o (~) = :r § fl~ (cr are continuous and (strictly) increasing. 8o (~) is large with large positive o:.

Finally 8io(a) has the sign o/ ~ (and 8 0 ( 0 ) = 0).

(iv) I f 8 = 8 o ( ~ ) , 0 < / l < - l + ~ - < l z , then d z / d x > A (l,,l~)>O.

z is positive for small positive x, since z' (0) > 0 if ~ > - 1, a n d z' (0) = O, z" (0) = - 2 8 > 0 if ~ = - 1 .

L e t z = u + x + 8, ? = ~ + 82 (and 70 = ~ + 802) ; t h e e q u a t i o n b e c o m e s d u 2

~ x = U + 2 ( x + 8 ) u + ? = u ( u + 2 x + 2 8 ) + ? , u ( 0 ) = - 8 . (1) L e t Cz, Cu be t h e curves z = z (x), u = u (x) (both for x_> 0), d e t e r m i n e d b y t h e e q u a - tions a n d t h e i r initial conditions, a n d let Fu be t h e h y p e r b o l a

u ( u + 2 x + 2 f l ) + 7 = O . T h e slope of Cu can v a n i s h o n l y a t a p o i n t of Fu.

F o r given ~ > _ - 1 t h e r e are 3 m u t u a l l y exclusive possibilities in r e s p e c t of fl:

(A) 2 Cz has a vertical a s y m p t o t e w h e r e z - - > + co; (B) C~ crosses O x (from positive t o n e g a t i v e z) (C) n e i t h e r (A) n o r (B) h a p p e n s ; we s a y in t h e respective eases t h a t fl 6 (A), (B), (C) (the classes v a r y w i t h a).

1 We include this obvious fact because it is explicitly used later.

2 Initial of "asymptote".

(15)

THE GENERAL EQ~ATIO~ ~ + k f (y) ?~ + g (y) = b k p (q), ~0 = t +

- 2

u

/

/

(i)

u

/

/

- f l /

(ii)

Fig. 3. (i) r fl > 0. The region

du/dx

> 0 is shaded. (ii) r fl < 0. The region

du/dx

> 0 is shaded.

(Erratum:

in Fig. 3 (i) - f l should be placed between - 2 fl and origo.)

15

i n t h e first place we h a v e b y c o n t i n u i t y :

T h e classes (A), (B) are open, a n d v a r y c o n t i n u o u s l y with ~, a n d f r o m L e m m a 4 we h a v e :

I f

fiE(A)

so does

fl'<fl;

if

fiE(B)

so does

fl'>fl.

(2)

(3)

T h u s (A) a n d (B), unless one of t h e m is null, are infinite o p e n intervals, s e p a r a t e d b y t h e c o m p l e m e n t a r y (C), which is either a closed interval or a single point.

W e aim first at p r o v i n g t h e following results:

(a)+ I f ~ > 0 , a small positive f i e (A), a n d e v e r y large positive tiff (B).

(a)_ If - 1 < ~ < 0, t h e n fl = - I ~ 189 E (A), a n d a n y small negative fl E (B).

(b) F o r ~=~0, if f i e (C), t h e n z>_O,

z=x+fl+F(x,~), $'=O(1/x),

a n d (C) contains e x a c t l y one ft.

(c)+ This fl is large w i t h large positive ~.

Suppose these results established. F r o m (a)+, (a)_, (b)+, (c)+ a n d (2) (continuity) it follows t h a t a unique continuous fl0 (a) exists for all ~ (including a = 0), t h a t fl0 (~) E (C), t h a t rio(a) has t h e sign of ~, a n d t h a t rio(s) is large w i t h large positive ~. F u r t h e r

(16)

16 J . E . L I ' I " r l J E W O O D

(i), (ii), (iii) of t h e L e m m a hold. I t r e m a i n s o n l y t o p r o v e (iv) a n d t h a t fl0 (~) a n d a + f l 0 ~ (cr are m o n o t o n i c increasing, a n d t h e s e we postpone, going on n o w t o p r o v e (a)+ t o (c)+. W e can divide (b) into t h e t w o cases (b)+ a n d (b)_ c o r r e s p o n d i n g t o

~ > 0 a n d ~ < 0 .

Begin w i t h t h e results involving ~ > 0 , n a m e l y (a)+, (b)+, (c)+.

I n (a)+ a n d (b)+ we m a y suppose ~ > 0 , f l > 0 . So ~ > 0 , I ~ is as in fig. 3 ( i ) a n d does n o t c u t O u (the e q u a t i o n w i t h x = 0 has no real roots).

C~ 1 s t a r t s a t P ( 0 , - f l ) w i t h positive slope ~. I f C~ cuts Ox before c u t t i n g F~, t h e slope c a n n o t v a n i s h t h e r e a f t e r , we h a v e d u / d x > u 2 + ~ ,, a n d Ca, a n d so also Cz, h a s a vertical a s y m p t o t e a t a n x=xo(~,;3); fl belongs to Class (A).

I f C~ cuts Fu before c u t t i n g O x, t h e slope of C~ becomes n e g a t i v e a n d r e m a i n s n e g a t i v e t h e r e a f t e r ; u is n e g a t i v e a t t h e crossing, u = - 2 say, a n d s u b s e q u e n t l y decreases, so t h a t l ul___ 2. N e x t , we m u s t h a v e u < - ~ ( x + f l ) for some large x, since t h e c o n t r a r y i n e q u a l i t y for all large x, c o m b i n e d w i t h (1), would i m p l y

u + 2 x § 2fl>_~(x § fl) d u

a n d ~ x < - l lu ] (x + fl) § ~<_ - ~ 2 (x + fl) + ~,

so t h a t u would go t o - c o a t least as f a s t as - 8 8 ~, a contradiction. Since u < - ~ (x § fl) implies z < - ~ (x + fl), this last is t r u e for some large x ; c o n s e q u e n t l y Cz m u s t cross O x a t a positive x = x o(~, fl), a n d fl belongs to class (B).

T o s u m u p : fl belongs to class (A) if Cu cuts Ox before Fu, a n d to class (B) if it cuts Fu before O x.

F o r a small positive fl, C~, h a v i n g slope ~ > cr a t P, clearly cuts O x first; a n d we h a v e t h e first p a r t of (a)+.

Suppose n e x t t h a t fl is large a n d positive. T h e n d z / d x is large a n d n e g a t i v e for some positive x. F o r suppose not, t h e n Cz does n o t go to - ~ o for finite x.

F u r t h e r , b y L e m m a 4, Cz is below t h e c u r v e

d--~=~+l+~, $(0)=0,

d x

which has a n a s y m p t o t e a t x = l : ~ ( l + ~ ) - ~ = c , say, a n d satisfies ~<c', say, in 0 _-_~2v.< ~ ( ! ~ I n t h e r a n g e { c _< x ~ ~ c we have, on t h e one h a n d z < c', a n d on t h e other, b y hypothesis, d z / d x > - K, where K is i n d e p e n d e n t of fl, a n d so z > _ 1 c K. H e n c e at x = l c ,

1 Cu is an auxiliary curve for proving facts about C z.

(17)

~ . O~.NER~a~ V, QUATm~T 9 + k ] (y) ~ + g (y) = b k p (~0), ~0 = t + 17 dZ__<z2 + l + ~ _ 2/5. 88 + icK)2 + l +o~_[ /sc,

dx

a n d as this is l a r g e a n d n e g a t i v e we h a v e a contradiction.

So d z / d x a n d a ]ortiori d u / d x , is large a n d n e g a t i v e for s o m e positive x. B u t for such x Cu m u s t h a v e a l r e a d y crossed Fu (since d u / d x is positive until Fu is crossed). Cu c a n n o t h a v e first crossed O x, since it w o u l d t h e n continue to m o v e u p w a r d s . This establishes t h e second half of (a)+.

W h e n /5 is of class (C), z r e m a i n s positive. F u r t h e r , Cu cuts n e i t h e r Ox n o r F~, a n d c o n s e q u e n t l y a p p r o a c h e s 0 x b e t w e e n O x a n d t h e a s y m p t o t i c b r a n c h of F~; henc u = 0 ( l / x ) , a n d z = x + fl + 0 ( l / x ) . I f this h a p p e n e d for t w o distinct /5's, /51 a n d /52>/51, we should h a v e z 2 = z l + ( / 5 , - / 5 1 ) + O ( 1 / x ) > z 1 for large x, w h e r e a s z2<z 1 b y L e m m a 4. W e h a v e accordingly p r o v e d (b)+.

T h a t fl0(~) is large w i t h large positive ~ is e v i d e n t ; if ~ is large a n d /5 is not, t h e large initial slope of Cu will t a k e it across Ox, a n d /5 will n o t be of class (C).

T h i s is (c)+, a n d we h a v e p r o v e d all t h e ~ > 0 results.

w W e n o w t a k e u p t h e ~ < 0 results, n a m e l y (a)_, (b)_. I n (a)_ we h a v e

~ < 0 , /5<0.

W h e n v = O , or / 5 = - I~189 t h e u e q u a t i o n is

d u

g%=u2+2(x+/5)u, u(0)=l/51.

This is soluble in finite t e r m s , a n d t h e solution h a s a n u p w a r d a s y m p t o t e : this p r o v e s (a)_.

F o r small n e g a t i v e /5 we h a v e 7 < 0 , a n d Fu is as in fig. 3 (ii). Since d u / d x vanishes on a n d o n l y on Fu, C~ c e r t a i n l y c a n n o t cross t h e lower b r a n c h of Fu. H e n c e if C~ crosses O x (as it clearly does for a small n e g a t i v e /5), u t a k e s a n e g a t i v e v a l u e - ) t a n d t h e r e a f t e r decreases further. I f we n o w h a d u > _ - ~ (x +/5) for all large x, we should h a v e

d u

u + 2 ( x + / 5 ) > 1 _~(x+/5), - - < - ~ ( x + / ~ ) + 7 d x -

for large x, a n d u would go to - oo like - 88 ~ x ~ a t least, t h e r e b y crossing t h e lower b r a n c h of Fu, which is impossible. H e n c e for s o m e large x u < - ~ (x +fl), a n d so z < - ~ ( x + f l ) , Cz crosses O x, a n d /5 belongs t o class (B). (a)_ is n o w proved.

F o r a fl of class (C) Cu m u s t go t o oo b e t w e e n Ox a n d t h e u p p e r b r a n c h of F~, since if it crosses t h e F~, u would s u b s e q u e n t l y increase; for large x we should h a v e

2 - 573805. Acta mathematica. 98. I m p r i m 6 le 19 n o v e m b r e 1957.

(18)

18 a.. ~. ia-rrLEWOOD

du/dx>u2+xu

w i t h a v e r t i c a l a s y m p t o t e . H e n c e

u=O(1/x),

a n d t h e r e s t of t h e p r o o f of (b)_ is t h e s a m e as for (b)+.

I t r e m a i n s t o p r o v e /50 (~) a n d y0(~) ( s t r i c t l y ) i n c r e a s i n g , a n d f i n a l l y (iv).

Consider C1, C2, t h e Cz for (~1, 80 (%)), (~2,/~0 (~2)) r e s p e c t i v e l y , a n d l e t $ = z 1 - z v W e h a v e

~ ' = P ~ - 2 b x + a ,

~ ( 0 ) = 0 ,

P=zl+z 2,

w h e r e a = ~1 - ~2, b =/~0 (0~1) -- 80 ((X2)' a n d t h i s g i v e s

X X

~=ee'f (-2bx+a)e-Pidx, Pl= f Pdx.

0 0

A s x - > o o ,

P=2x+O(1), Pl=x~+O(x).

I f n o w % > ~ a n d so a > 0 , ~ will t e n d t o oo l i k e e e' u n l e s s b > 0 . Since

~ = O ( 1 ) , b > 0 a n d /~0(~) is i n c r e a s i n g .

N e x t , a g a i n w i t h ~1 > ~ , l e t ~ = z I (x) - z 2 (x +/~1 -/~2) w h e r e we write/~1.2 =/~0 (~1, ~),

7 1 , 2 = 7 0 ((Xl, 2)" W e f i n d

~'=P~1+(71-72), P=Zl(X)+Z2(X+fll-fl2),

if:

0

W e h a v e a g a i n P = 2 x + 0 (1), P1 = x2 + 0 (x). A l s o ~ (0) < 0 a n d we shall h a v e 7 - + - oo, w h i c h is false, u n l e s s 7 1 - 7 2 > 0 ; 70(x) is incresing.

I n (iv) C~ c a n n o t cross t h e h y p e r b o l a z 2 - x 2 - 2 80 x + 1 + ~ = 0, since i t s

dz/dx

w o u l d t h e r e a f t e r b e n e g a t i v e , a n d

dz/dx>O

for x>_0; also

dz/dx-->l

a s

x-->oo, dz/dx

h a s

i

a p o s i t i v e m i n i m u m A (a), c o n t i n u o u s in a, a n d t h e d e s i r e d r e s u l t s follows.

w 12. " L i n k a g e of

v, co, V

a t 'U f o r a s e t t l e d t r a j e c t o r y " . 1 This, in full d e t a i l , a n d for g e n e r a l ], g, p, is o u r n e x t t a s k .

T h e r e a r e in p o i n t of f a c t t w o d i s t i n c t s e t s of c i r c u m s t a n c e s in w h i c h we n e e d t o e s t a b l i s h " l i n k a g e " a t U on y = 1 b e t w e e n v a n d o~ ( a n d V, w h i c h is a c o m b i n a t i o n of v a n d co). One, d i s c u s s e d a t l e n g t h in t h e I n t r o d u c t i o n , is t h e case of a r r i v a l a t U a f t e r a " l o n g d e s c e n t " t o y = 1, w i t h p o s s i b l e dips. H e r e we e s t a b l i s h n o t o n l y t h e linkage, b u t (from L e m m a 3) also a n u p p e r b o u n d for I wl (one of o r d e r k - t ) . T h e o t h e r b e c o m e s i m p o r t a n t o n l y m u c h l a t e r . I n this, o n t h e one h a n d n o t h i n g is a s s u m e d a b o u t t h e p r e v i o u s h i s t o r y of t h e t r a j e c t o r y e a r l i e r t h a n a t i m e k -89 log k b e f o r e U; o n t h e o t h e r h a n d we a r e

given

t h a t eo is of o r d e r / c - 8 9 W e g i v e a s e p a r a t e

1 Cp. Introduction w 11, 12.

(19)

THE GENERAL EQUATION y + ]C l (Y) Y + g (Y) = b k p (~), ~ = t + r 19 L e m m a for each case; when we come to proo/s, tiowever, it is n a t u r a l to establish first the restriction on eo in the first case, after which everything reduces to proving the second case (where the co-restriction is a hypothesis).

I n dealing with linkage, we n a t u r a l l y transform our variables v, to (as in the Introduction) to p a r a m e t e r s m, fl appropriate for the application of L e m m a 5. The s t a t e m e n t of the two L e m m a s is further complicated b y (i) the necessity of working with undetermined d, d'; (ii) the need for a specific error.term in the "linkage".

We set out first some p e r m a n e n t notation. F o r a trajectory (in the first instance otherwise unrestricted) arriving a t U on y = 1 from above, let

~t1= _ 1 ~ _ ~ , ]o~[~<az; --~lv=v; V = v + b l c ( l + p i ( ' l ~ - t - o ) ) ; (1}

and let the change of variables to ~, fl be defined b y

fl=2- 89189 ( - P ( - l g - ~ ~ / (2}

l + o t = v / v * , V*=v*=al 89189 j rio(m) is the function of L e m m a 5.

We h a v e now

1 < <_ 2, and let d be a non.negative, and d ' a positive constant.

L E M M A 6. Let ir

Suppose that an eventual trajectory F satislies the two /ollowing sets o I conditions (A) and (B):

(A) it ends with a piece W U (U on y = l ) lying in y>_l and of time-length at least k-~ log k.

(B) W U is preceded by a piece X Y W ; the whole o/ X W (and so o/ X U) is in y >_ 1 - d k - 8 9 X Y has time-length at least d'; and Y U contains a point at which q~=_ _ i n .

I / now /urther k>_ko(d,d'), then we have upper bounds (tot v , w , V , ~ , f l ) as /ollows, in which A is an abbreviation /or A (d, d'):

(a) Io~l<A~-%

(b) 0 _ < v < V_<A;

(e) I ~ [ < i

(d) 0 _ < I + ~ < A .

1 We de]ine V* by V* = v*.

(20)

20 z. •. ~vrLEWOOD And we have linkage given (in terms o/ ~, fl) by

(e) fl =rio(a) + 0 (k-89 log A k). 1

We note /or convenience the asymptotic relations 2 (/or k large, eo small)

(f)

V = V * ( l + a + f l o ~ ( ~ ) ) + O ( h k - t l o g A b). I

Finally we have (/or re/erence)

(g) V* = v*, L < V* < L.

L ~ M M A 7. The conclusions o/ Lemma 6, with d absent from k o and A's, are valid (in form s) when (B) is replaced by

(B')

Io~l<_d' k-~.

W e prove first (a) of L e m m a 6. I n L e m m a 6 L e m m a 3 (4) is valid for Y U, so t h a t for points Y U

F (y) - F (1) = C + b (1 + Pl (~0)) + 0 (A It-l). (3) NOW Y U contains a p o i n t S where ~0-- - ~ , a n d so 1 +p(~0)=0; also F ( y s ) - F ( 1 ) >_ 0;

hence C > - A / c - i , a n d t a k i n g y = 1, ~0=~0v in (3), we h a v e b (1 + Pl (~0v)) < - C + 0 (A k -1) < 0 (A k-l), a n d so f r o m L e m m a 2 (4) 4

o~ 2 = 0 ( A

k-l),

as desired.

w t 3 . E v e r y t h i n g n o w reduces t o p r o v i n g L e m m a 7; for in L e m m a 6 we h a v e p r o v e d (a), i.e. condition (B') is fulfilled with A (d, d') for d', a n d this leads t o t h e s a m e final results. Our a r g u m e n t s are n o w based on (B') a n d t h e f a c t t h a t t h e r.m.

f r o m U does n o t go outside 1 _< y_< L* within a time k- 89 log k.

I n t h e O-identity for t h e direct m o t i o n (d.m.) f r o m U, viz.

t

= - v - k ( F (y) - F (1)) § b k (p~ (q:) - p, (q)v)) - / g dr,

t u

1 W e do n o t a i m a t b e s t p o s s i b l e p o w e r s of l o g k i n t h e e r r o r t e r m , t h e m o r e so t h a t w e c a n a b s o r b a f a c t o r A b y c h a n g i n g t h e A.

2 T h e s e a r e s t r a i g h t f o r w a r d c a l c u l a t i o n s f r o m (a) . . . (e), a n d t h e p r o p e r t i e s of t h e f u n c - t i o n s p, Pl.

a d ' h a s a n e w m e a n i n g i n L e m m a 7, a n d d d o e s n o t o c c u r . 4 T h e s p e c i a l a s s u m p t i o n a b o u t Pl is i n v o l v e d .

(21)

THE GENERAL V.QUATIO~

i]+kf(y)?)+g(y)=bkp(cp), q~=t+(x

21 we write t = Tv--T to obtain the r.m. with t i m e variable zero a t U. This gives

d ~ = ~ + k (F(y) - ~ ( 1 ) ) - b k (Pl ( _ 1 ~ _ ~ _ 3 ) - pl ( - ~ - ~ ) ) + 0 (3)

=v+ k (F(y)- F (1)) + blcp ( - ~ r - o ~ ) ~ - l b kp' ( - l ~-o~) ~ + O (k~s) + O(v),

with y ( 0 ) = 1, or ~ ( 0 ) = 0. I n this we write

~ = y - l = c k - 8 9 ~;=Tk-89

where c, F are given in t e r m s of the f u n d a m e n t a l constants b y

l c T a t = 1 ,

~Tac-tba~=l,

a n d t h e n write

~ + 1 = 7 c - l v ,

f l = 8 9 1 8 9 -1,

which yield the values of w 12 for ~, /~.

The result of t h e substitutions is

dz p , ( _ l ~ _

dx=l+~+,p(z) p , ( _ ~ : r ; ) x ~ - 2 ~ x + O ( k - ~ x 3 ) + O ( k - ~ x ) ,

where

~p(z)=~p(z,k)=~,c-lk(F(y)-F(1)).

Since

w=O(Ak- 89

the coefficient of x 2 is - l + 0 ( A k - 8 9 Thus t h e r.m. f r o m U, in (z,x) form, is

dz d--~=l+~+~p(z)-x~-2flx+xe(x),

z(0) = 0 , (1)

where, over the range 0 _ x _ ~ -1 log k,

(x) = 0 (A k-89 (1 + x + x~), (2)

a n d /3 = 0 (k~ ~o) = 0 (A). (3)

9 The solution z is finite and non-negative in the range, y satisfies 1 _<y_< L*, and so, b y L e m m a 2 (8), ~o satisfies

a n d

F r o m this state of things results of the L e m m a .

We begin b y proving (which is (d) of the L e m m a ) .

~0 = z 2 + 0 ( k - ~ za), (4)

L1 z2 ~ ~p (z) ~ .L2z 2.

(5)

[and for suitable

ko(d ,

d')] we have to deduce the

I + ~ < A (6)

(22)

22 J. E. LITTLEWOOD F o r x_< 1 (and suitable k e (d, d')) we h a v e

] - x ~ - 2 f l x + x e ( x ) ] < I + A + A k - ~ < A 1 . Suppose n o w t h a t 1 + a > A l + l ; t h e n f r o m (1)

d z > l + v 2 (z) > l + L2z2;

d x

b y L e m m a 4 z is a b o v e t h e solution of d z / d x = LszS+ l, which has a n a s y m p t o t e a t x= 89189 This n u m b e r is less t h a n 1 if l is a suitable chosen L, a n d we h a v e t h e n a c o n t r a d i c t i o n w i t h "z < oo (0 < x < 1)". H e n c e 1 + ~ > Ax + 1 implies l < L, a n d this p r o v e s (6).

F o r O < x < ? - l l o g k (and suitable /co) we h a v e

[1 + c r s - 2 f l x + x e (x)l < A + ?-Slog 2 k + A log k + A k - 8 9 log a k < 2 7 -s log s k.

d z

H e n c e d x = ~ + 2 v~ ?-s log~ k (0 _<_ x _< ? - s log k), (7) where Iv ~ ] _< 1.

W e p r o v e n e x t t h a t in t h e s h o r t e r r a n g e 0_<x_<~ ? - s log k d z

d-x < l~ k. (8)

F o r suppose not, so t h a t d z / d x = l o g a k for t h e first t i m e a t a n x = ~ satisfying

_ ~ ? log k. Consider n o w t h e r a n g e f r o m ~ t o ~1, where ~1 is either ? - 1 log k, or else t h a t x > ~ a t which first d z / d x = O , w h i c h e v e r is least. I n (~, ~l) Z is non-decreasing

a n d s o

d~>_ ~ - 2 ? - 2 logs k >_ L~ - 2 ? Z s ~ 2 log s k >_ L s z ~ (~) - 2 ? - 2 log s k = ( L j L ~ ) (L lz 2 (~) - L log s k) > 0, since LlZS(~)>~;0(~) = ~ - 2 0 ? - S l o g S k = l o g 3 k - 2 v q e ? - 2 1 o g S k > ~ l o g a k . (9) H e n c e t h e a l t e r n a t i v e d z / d x = O does n o t h a p p e n first, so t h a t ~ 1 = ? -s log k. T h u s in (~, ? - t log k )

z > z ( ~ ) > L l o g ~l' k, d ~ > L s - 2 ? - S l o g S k Z s > 1 L - - ~ . ~ S z-* ~

lo~ [ d z L

~ ] o g k < _ l o g k - ~ = j d x < t ~ < - - < l

J ~Lsz z(~)

z ( D

b y (9). This being false, we h a v e e s t a b l i s h e d (8).

(23)

THE GENERAL E Q U A T I O ~ ff -4- k f (Y) Y + g (Y) = b k p ((p), (p = t + r162 23 For t h e range 0 < x_< 89 ~ - 1 log ]~ w e n o w h a v e I z I < t 7 -1 l~ 4 k, b y (8); also

[el(X)l<Ak- 89

b y (2). F r o m these a n d (1), (4) t h e z, x e q u a t i o n now becomes

d z

d ~ = l + ~ q - 2:2 - - X2 - - 2 / ~ X - l - Z 81 ( X ) , Z ( 0 ) = 0 ,

[ e 1 (x) I < A k - t log 12 k < k - 89 lo g A k.

L e t 0 = f l - fl0 (~), let ~ = ~ (x, ~) be the solution in 0_< X ~ 89 7 -1 log k of

d $ ~z

d ~ = l + c r -- x~-- 2 flo (:r x, ~(0) = 0 ,

and let

u = z - ~ .

We shall prove t h a t ]0]_<2 k-89 logA'k, t h e r e b y establishing t h e re- maining result (e) of t h e L e m m a . Suppose t h a t , on t h e c o n t r a r y , 101> 2 k - t log A'

k,

a n d suppose first t h a t 0 is positive. T h e n 2 0 - el ( x ) > 0. N o w u satisfies

d u

d-x = u (~ + z) - (2 O--e 1 (x)) x, u (0) = O, a n d b y L e m m a

4 u< w,

where

d w

d-~=w(r +z)-Ox,

w(0)-=0,

X X X

and so

w=-Oexp(f(r fxexp(-f(r

(10)

0 o 0

Now, b y L e m m a 5 (iii), I $ - x l = l f l 0 ( a ) + F ( x , a ) l < A , since - I < ~ < A , a n d b y (8) we h a v e 0 < z_< x log a k. H e n c e

x x x x

f x e x p

( - - f ( : + z ) d x ) d x > y x e x p

( - f ( x + i + x l o g 3 k ) d x ) d x

0 0 0 0

x

= f x exp ( -- A x - ~ (1 + log S

k) x 2) dx

0

> A log -S k (11)

for x = 1 a n d therefore for x > 1. So for x > l we h a v e from (10) ] w [ =

--w>O

exp ( f ~ d x ) . A l o g - 3 k,

0

]w] _> (2 k -89 log a' k). exp ( i x ~, _ A x ) - A log -3 k (1 < x < ~ ~- t-1 log k). (12)

(24)

~ 4 J . E . LITTLEWOOD

On the other hand,

I w l = - w _ < - u = < x + A + x log a k. (13)

(12) and (13) are incompatible (for a suitable k0) when x = 89 7-1 log k, and the assumed inequality for 0 is false.

In the case of negative 0, assuming 0 < - 2 k -89 loga'k, we have w non-negative, u>~w, and so w _ < z - $ _ < z + l ~ ] , and the rest of the argument is the same.

This completes the proof of L e m m a 7 (and L e m m a 6).

w tt~. L ~ M ~ A 8. ("Dip or shoot-through at a U".) Let ~ < _ b < 2 . Let the piece W U o/ F satis/y the conditions (A), (B) o/ Lemma 6. Abbreviate constants A (d, d', 6) to A. t

(i) Suppose V-> V* + ~; then /or k-> k o (d, d', ~}) the d.m. /tom U 1 shoots through and reaches 2 y = - l ( l + H ) in time at most A k -89 Up to this moment we have

- 3 - > V* > L, and

-~) = v + k (F ( y ) - $' (1)) + 0 ( A ) ;

and /inally the velocity o~ arrival at y = - ~ (1 + H) satisfies - ? ) > L k.

(ii) Suppose V ~ V * - ~ ; then /or k->ko(d,d',~), (a) the d.m. /rom U makes a dip o/ depth Ak- 89 at most below y = l , emerging at time Ak- 89 at most later. I t then {b) pursues approximately the curve C1, the branch o/

F ( y ) - F ( 1 ) = b (1 + Pl (~))

lying in y_>l, and (c) i/ F has been above y = l - d k -89 /or a time 3rl be~ore u it arrives at y = 1 again at a time approximately 2 ~ later.

In either case F satisfies, up to its arrival at U, the hyl0otheses, and therefore the conclusions, of L e m m a 6.

The d.m. from U, taking t = 0 at U, is

- ?) = v + k ( F (y) - F (1)) - b k (Pl (q~v + t) - pl (~v)) + g~

= ( v + k ( F ( y ) - F ( 1 ) ) ~ - b l c { p ( - ~ - o J ) t + ~ p ' ( - l r e - m ) t 2 ~ + O ( k t a ) + O ( t ) . (1)

= (v + k ( F (y) - F (1))} + 0 (k o~ t) + 0 (k t 2) + 0 (k t a) + O (t). (2)

1 I n a p p l i c a t i o n s A b e c o m e D ' s . T h e b l a n k c h e q u e s d, d ' a r e s t i l l i n v o l v e d , v i a t h e h y p o t h e s e s

(A), (B).

W h a t w e do ( w h i l e w e a r e a b o u t it), is t o f o l l o w t h e s h o o t - t h r o u g h u p t o a p o i n t a d i s t a n c e L below y = - l : t h i s is a m o r e c o n v e n i e n t p l a c e t h a n y = - 1 f o r t h e n e x t s t a r t i n g p o i n t .

(25)

THE GENERAL EQUATION y § k f (y) ~ + g (y) = b k p (~0), ~0 = t + 25 L e t c, ~, ~, 8 be t h e n u m b e r s a n d ~(z) t h e f u n c t i o n of w 13, a n d write y = 1 - c k - 8 9 t=~,k- 89 (1) t h e n gives (with a n e(x) different f r o m t h a t of w

d x - l + ~ + ~ ( - ~ ) - x S + 2 8 x + x e ( x ) , ~ ( 0 ) = 0 , ( (3) e (x) = O ( h k -89 (1 + x + xS). ]

(that is, formally, (1) of w 13 with - $ for z a n d - 8 for 8).

Case (i). V_> V* + d. B y L e m m a 6 (f) we h a v e a + 8~ (cr > L ~, a n d so, b y L e m m a 5,

> A (~) a n d 8o (~) > A1 (5). Since

18- o( )1 < log a k < (6), b y L e m m a 6 (e), we h a v e f l > A ((~).

Consider n o w (3) for t h e r a n g e of x after 0 to t h e value for which (for t h e first

1 1

time) ~ = 0, or I E I = k~, or x - / c ~ , whichever h a p p e n s first. I n this range 2 fl + e (x) > 0 _ ! + 3

a n d y J ( - ~ ) = ~ 2 + 0 ( k 2 10), a n d so

d S>l+89

dx B y L e m m a 4 $ ~> w, where

dw d - - x = l + ~ + w S - x 2 , w ( 0 ) = 0.

B y L e m m a 5 w>_0 a n d w has an a s y m p t o t e t o + ~ a t x = x o ( a ) < A2(5). H e n c e t w o 1

of t h e a l t e r n a t i v e s fail, a n d ~ reaches t h e value + k~ before x = A 2 (5) a t most, which 1

corresponds to t = A k- 89 a t most, a n d t h e n - ~ = (c/y) d ~/d x > L ~2 _ A > L kg. F u r t h e r

~_>x, since ~ is n o t less, b y L e m m a 4, t h a n t h e solution of d u

d-x= l + u 2 - x 2, u ( 0 ) = 0 ,

which is u = x ; hence d $ / d x > 1 + ~ > 1 throughout, equivalent to -~)> V*.

R e t u r n n o w t o (1). We h a v e - ~ > V * u p t o a time t l < A k - - ~ , a n d at t=tl,

1 1

y - 1 = - c ki~-~. Consider t h e range f r o m t = t 1 until either - y = V*, or y = - 1 (1 + H), or t - t l = k - ~ , whichever h a p p e n s first. I n this range (2) gives

( - ~) - {v + k ( F (y) - F (1))} = O (h), (4)

since w = 0 (Ak- 89 I n particular

(26)

26 J. E. LITTLEWOOD

- y > k ( F ( y ) - F ( 1 ) ) - A I > L ~ k (1 _ y ) 2 A1

b y L e m m a 2 (8). F u r t h e r - # > V * > 0 a n d k ( 1 - y ) 2 > _ k ( 1 - y ) ~ = t = L k ~, a n d so

- y > i L2k (1-y)2. (5)

1 1

N o w this m o t i o n , i/ uninterrupted, m a k e s y go t o - o o in t i m e O ( k - ~ - ~ ) with - y > V* t h r o u g h o u t . W e infer t h a t of t h e t h r e e a l t e r n a t i v e s it is y = - -~ (1 + H ) t h a t h a p p e n s first, a n d in t i m e a t m o s t ( A + l ) k - 8 9 a f t e r U, a n d then, b y (5), - # > L k . This completes t h e proof of case (i).

w t5. Case (ii). V < V * - ( ~ . Much of this is parallel t o case (i). B y L e m m a 6 (f) we h a v e ~ < - A ( ( ~ ) , so t h a t , b y L e m m a 5, r i 0 ( a ) < - A 1 ( 5 ) ; also 1fl-flo(~)[< 89 a n d so fl < - ~ A 1 ((~). Consider t h e ~, x e q u a t i o n [(3) of w 14] for t h e r a n g e of x a f t e r

1 1

0 t o t h e value for which (for t h e first time) ~ = 0 , or [ r or x = k~, w h i c h e v e r _1+__8

h a p p e n s first. I n this r a n g e 2 fl + ~ (x) < 0, a n d yJ ( - ~) = ~2 + 0 (k ~ 10), a n d so d ~ < 1 - 4 - 8 9 1 6 2 2.

B y L e m m a 4 ~ < w, where

dw T x = l + 8 9 w(0) = 0 .

B y L e m m a 5 (since a < 0) w, initially positive, b e c o m e s n e g a t i v e a t x = A (~) a n d is b o u n d e d b y a n A (~r before this point. W e infer t h a t obvious a l t e r n a t i v e s fail, a n d t h a t t h e d.m. f r o m U ' m a k e s a dip, as described in (ii).

w L e t t h e dip e m e r g e a t U', w i t h yv,=v'>-O. 1 i W e t a k e t = 0 a t U ' , a n d w e h a v e n o w to discuss t h e d.m. f r o m U', for which

N o w for t < k - ~

9 = v' - k ( F (y) - F (1)) + b k (pl (~v" + t) - P l (~gu')) - gl"

b k (pl (q~u. + t) - p l (q~v.) ) = b kt p ( - 89 ze + O),

where 0 = - ~o+ (q~u,-qpu)+v~t, which is (a) small, a n d (b) g r e a t e r t h a n - c o , which is positive with - f l ( L e m m a 6). Since p ' ( - - ~ z t ) is positive,

b k p ( - ~ze + O ) > _ b k p ( - ~ z t - e o ) = L b ~ ]fll k89 Ak89

1 The dashes in U', v' are t e m p o r a r y n o t a t i o n only, inside the proofs, a n d while we are dealing w i t h dips.

Odkazy

Související dokumenty

I n this paper in the early part, the first six sections, we make a thorough qualitative s t u d y of ordinary differential operators with constant

The stationary flow of a compressible fluid is described b y a quasi-linear second order partial differential equation of divergence type.. The equation is

This m a y be read off from the familiar Poisson integral representation of harmonic functions in a sphere in terms of their boundary values... We proceed as

The solutions are piecings together of expressions in finite terms, and he is able to show, in reasonable compass, that for some intervals of b there are two sets

I n the present paper, we consider a more general situation in which the differential equation is not restricted to be linear and use different methods. The

Section 7 deals with kernels which include as a special case those possessing a derivative of fractional positive order (with respect to x).. On the

[r]

Stanovte, kde uvedená