• Nebyly nalezeny žádné výsledky

Fractional Order Partial Hyperbolic Functional Differential Equations

N/A
N/A
Protected

Academic year: 2022

Podíl "Fractional Order Partial Hyperbolic Functional Differential Equations"

Copied!
25
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

doi:10.1155/2011/379876

Research Article

Global Uniqueness Results for

Fractional Order Partial Hyperbolic Functional Differential Equations

Sa¨ıd Abbas,

1

Mouffak Benchohra,

2

and Juan J. Nieto

3

1Laboratoire de Math´ematiques, Universit´e de Sa¨ıda, P.O. Box 138, Sa¨ıda 20000, Algeria

2Laboratoire de Math´ematiques, Universit´e de Sidi Bel-Abb`es, P.O. Box 89, Sidi Bel-Abb`es 22000, Algeria

3Departamento de An´alisis Matem´atico, Facultad de Matem´aticas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Correspondence should be addressed to Juan J. Nieto,juanjose.nieto.roig@usc.es Received 22 November 2010; Accepted 29 January 2011

Academic Editor: J. J. Trujillo

Copyrightq2011 Sa¨ıd Abbas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the global existence and uniqueness of solutions for some classes of partial hyperbolic differential equations involving the Caputo fractional derivative with finite and infinite delays. The existence results are obtained by applying some suitable fixed point theorems.

1. Introduction

In this paper, we provide sufficient conditions for the global existence and uniqueness of some classes of fractional order partial hyperbolic differential equations. As a first problem, we discuss the global existence and uniqueness of solutions for an initial value problemIVP for shortof a system of fractional order partial differential equations given by

c Dr0u

x, y f

x, y, ux,y

; if x, y

J, 1.1

u x, y

φ x, y

; if x, y

J, 1.2

ux,0 ϕx, u 0, y

ψ y

; x, y∈0,∞, 1.3

whereJ 0,∞×0,∞,J: −α,∞×−β,∞\0,∞×0,∞;α, β >0,φCJ,Rn,cDr0 is the Caputo’s fractional derivative of orderr r1, r2∈0,1×0,1, f :J× C → Rn, is a given functionϕ:0,∞ → Rn,ψ :0,∞ → Rnare given absolutely continuous functions

(2)

withϕx φx,0,ψy φ0, yfor eachx, y ∈0,∞, andC:C−α,0×−β,0,Rnis the space of continuous functions on−α,0×−β,0.

IfuC−α,∞×−β,∞,Rn, then for anyx, y∈Jdefineux,yby ux,ys, t u

x s, y t

, fors, t∈−α,0×

−β,0

. 1.4

Next we consider the following initial value problem for partial neutral functional differential equations with finite delay of the form

cDr0 u

x, y

g

x, y, ux,y f

x, y, ux,y

; if x, y

J, 1.5 u

x, y φ

x, y

; if x, y

J, 1.6

ux,0 ϕx, u 0, y

ψ y

; x, y∈0,∞, 1.7

wheref,φ,ϕ,ψare as in problem1.1–1.3, andg:J× C → Rnis a given function.

The third result deals with the existence of solutions to fractional order partial hyperbolic functional differential equations with infinite delay of the form

c Dr0u

x, y f

x, y, ux,y

; if x, y

J, 1.8

u x, y

φ x, y

; if x, y

J, 1.9

ux,0 ϕx, u 0, y

ψ y

; x, y∈0,∞, 1.10

where ϕ,ψ are as in problem 1.1–1.3 and J R2\ 0,∞×0,∞, f : J ×B → Rn, φCJ,Rn, andBis called a phase space that will be specified inSection 4.

We denote byux,ythe element ofBdefined by ux,ys, t u

x s, y t

; s, t∈−∞,0×−∞,0. 1.11

Finally we consider the following initial value problem for partial neutral functional differential equations with infinite delay

cD0r u

x, y

g

x, y, ux,y f

x, y, ux,y

; if x, y

J, 1.12 u

x, y φ

x, y

; if x, y

J, 1.13

ux,0 ϕx, u 0, y

ψ y

; x, y∈0,∞, 1.14

wheref,φ,ϕ,ψ are as in problem1.8–1.10and g : J ×B → Rn is a given continuous function.

In this paper, we present global existence and uniqueness results for the above-cited problems. We make use of the nonlinear alternative of Leray-Schauder type for contraction maps on Fr´echet spaces.

The problem of existence of solutions of Cauchy-type problems for ordinary differential equations of fractional order without delay in spaces of integrable functions was

(3)

studied in numerous workssee1,2, a similar problem in spaces of continuous functions was studied in3. We can find numerous applications of differential equations of fractional order in viscoelasticity, electrochemistry, control, porous media, electromagnetic, theory of neolithic transition, and so forth,see4–11. There has been a significant development in ordinary and partial fractional differential equations in recent years; see the monographs of Kilbas et al.12, Lakshmikantham et al. 13, Miller and Ross14, Samko et al.15, the papers of Abbas and Benchohra16–18, Agarwal et al.19,20, Ahmad and Nieto21–23, Belarbi et al.24, Benchohra et al. 25–27, Chang and Nieto28, Diethelm et al.4,29, Heinsalu et al.30, Jumarie31, Kilbas and Marzan32, Luchko et al.33, Magdziarz et al.34, Mainardi9, Rossikhin and Shitikova35, Vityuk and Golushkov36, Yu and Gao 37, and Zhang38and the references therein.

For integer order derivative, various classes of hyperbolic differential equations were considered on bounded domain; see, for instance, the book by Kamont 39, the papers by Człapi ´nski 40, Dawidowski and Kubiaczyk 41, Kamont, and Kropielnicka 42, Lakshmikantham and Pandit43, and Pandit44.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper. Letp∈NandJ0: 0, p×0, p. LetCJ0,Rnbe the Banach space of all continuous functions fromJ0intoRnwith the norm

z sup

x,y∈J0

z

x, y, 2.1

where · denotes a suitable complete norm on Rn. As usual, by ACJ0,Rn we denote the space of absolutely continuous functions fromJ0 intoRn andL1J0,Rnis the space of Lebegue-integrable functionsw:J0 → Rnwith the norm

w1 p

0

p

0

w

x, ydy dx. 2.2

Letr1, r2>0 andr r1, r2. ForzL1J0,Rn, the expression I0rz

x, y

1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

zs, tdt ds, 2.3

where Γ· is the Euler gamma function, is called the left-sided mixed Riemann-Liouville integral of orderr.

Denote byD2xy:2/∂x∂y, the mixed second-order partial derivative.

Definition 2.1see36. ForzL1J0,Rn, the Caputo fractional-order derivative of order r∈0,1×0,1ofzis defined by the expressioncD0rzx, y I01−rD2xyzx, y.

In the definition above by 1−rwe mean1−r1,1−r2∈0,1×0,1.

If z is an absolutely continuous function, then its Caputo fractional derivative cDr0zx, yexists for eachx, y∈J0.

(4)

LetXbe a Fr´echet space with a family of seminorms{ · n}n∈N. We assume that the family of seminorms{ · n}verifies:

x1x2x3≤ · · · for everyxX. 2.4

LetYX, we say thatYis bounded if for everyn∈N, there existsMn>0 such that y

nMn, ∀y∈Y. 2.5

ToXwe associate a sequence of Banach spaces{Xn, · n}as follows. For everyn∈N, we consider the equivalence relation∼ndefined by:x∼nyif and only ifx−yn0 forx, yX.

We denoteXn X|n, · nthe quotient space, the completion ofXnwith respect to · n. To everyYX, we associate a sequence{Yn}of subsetsYnXnas follows. For everyxX, we denotexnthe equivalence class ofxof subsetXnand we definedYn {xn :xY}.

We denoteYn, intnYnandnYn, respectively, the closure, the interior and the boundary of Ynwith respect to · ninXn. For more information about this subject see45.

Definition 2.2. LetXbe a Fr´echet space. A functionN :XXis said to be a contraction if for eachn∈Nthere existskn∈0,1such that

Nu−Nvnknu−vn, ∀u, v∈X. 2.6 Theorem 2.3see45. Let X be a Fr´echet space andYXa closed subset inX. LetN:YX be a contraction such thatNYis bounded. Then one of the following statements holds:

athe operatorNhas a unique fixed point;

bthere existsλ∈0,1, n∈NandunYnsuch thatu−λNun0.

In the sequel we will make use of the following generalization of Gronwall’s lemma for two independent variables and singular kernel.

Lemma 2.4see46. Letυ:J0 → 0,∞be a real function andω·,·be a nonnegative, locally integrable function onJ. If there are constantsc >0 and 0< l1,l2<1 such that

υ x, y

ω x, y

c x

0

y

0

υs, t x−sl1

ytl2dt ds, 2.7

then there exists a constantkkl1, l2such that

υ x, y

ω x, y

kc x

0

y

0

ωs, t x−sl1

ytl2dt ds, 2.8

for everyx, y∈J0.

(5)

3. Global Result for Finite Delay

Let us start by defining what we mean by a global solution of the problem1.1–1.3.

Definition 3.1. A functionuC0 : C−α,∞×−β,∞,Rnsuch that its mixed derivative Dxy2 exists and is integrable onJis said to be a global solution of1.1–1.3ifusatisfies1.1 and1.3onJand the condition1.2onJ.

LethL1J0,Rnand consider the following problem c

D0ru x, y

h x, y

;

x, y

J0, ux,0 ϕx, u

0, y ψ

y

; x, y∈ 0, p

, ϕ0 ψ0.

3.1

For the existence of global solutions for the problem1.1–1.3, we need the following known lemma.

Lemma 3.2see16,17. A functionu∈ ACJ0,Rnis a global solution of problem3.1if and only ifux, ysatisfies

u x, y

μ

x, y I0rh

x, y

,

x, y

J0, 3.2

where

μ x, y

ϕx ψ y

ϕ0. 3.3

As a consequence ofLemma 3.2, we have the following result.

Lemma 3.3. A functionu ∈ ACJ0,Rnis a global solution of problem1.1–1.3if and only if ux, y φx, y, x, y∈Jandux, ysatisfies

u x, y

μ

x, y I0rf

x, y

,

x, y

J0, 3.4

where

μ x, y

ϕx ψ y

ϕ0. 3.5

For eachp∈N, we consider following set:

CpC

−α, p

×

−β, p ,Rn

, 3.6

and we define inC0the seminorms by upsup u

x, y:−α≤xp, −β≤yp

. 3.7

ThenC0is a Fr´echet space with the family of seminorms{up}.

(6)

Further, we present conditions for the existence and uniqueness of a global solution of problem1.1–1.3.

Theorem 3.4. Assume that

H1the functionf:J× C → Rnis continuous,

H2for eachp∈N, there existslpCJ0,Rnsuch that for eachx, y∈J0 f

x, y, u

f

x, y, vlp

x, y

u−vC, for eachu, v∈ C. 3.8

If

lppr1 r2

Γr1 1Γr2 1 <1, 3.9 where

lp sup

x,y∈J0

lp

x, y

, 3.10

then, there exists a unique solution for IVP1.1–1.3on−α,∞×−β,∞.

Proof. Transform the problem1.1–1.3into a fixed point problem. Consider the operator N:C0C0defined by,

Nu

x, y

⎧⎪

⎪⎩ φ

x, y

,

x, y

J, μ

x, y 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1 f

s, t, us,t

dt ds, x, y

J.

3.11

Clearly, fromLemma 3.3, the fixed points ofNare solutions of1.1–1.3. Letube a possible solution of the problemuλNufor some 0< λ <1. This implies that for eachx, y∈J0, we have

u x, y

λμ

x, y λ

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1 f

s, t, us,t

dt ds. 3.12

Introducingfs, t,0−fs, t,0, it follows byH2that u

x, yμ

x, y fpr1 r2 Γr1 1Γr2 1 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1

lps, tus,t

Cdt ds,

3.13

(7)

where

f sup

x,y∈J0

f

x, y,0. 3.14

We consider the functionτdefined by τ

x, y

sup us, t:−α≤sx, −β≤ty; x, y∈ 0, p

. 3.15

Letx, y ∈−α, x×−β, ybe such thatτx, y ux, y. Ifx, yJ0, then by the previous inequality, we have forx, y∈J0,

u

x, yμ

x, y fpr1 r2 Γr1 1Γr2 1 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1

lps, tτs, tdt ds.

3.16

Ifx, yJ, then τx, y φCand the previous inequality holds.

By3.16we obtain that τ

x, y

μ

x, y fpr1 r2 Γr1 1Γr2 1 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1

lps, tτs, tdt ds

μ

x, y fpr1 r2 Γr1 1Γr2 1 lp

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1

τs, tdt ds,

3.17

andLemma 2.4implies that there exists a constantkkr1, r2such that

τ x, y

μ

p

fpr1 r2 Γr1 1Γr2 1

1 klp

Γr1 1Γr2 1

:Mp. 3.18

Then from3.16, we have upμ

p

fpr1 r2 Γr1 1Γr2 1

Mplp

Γr1 1Γr2 1 :Mp. 3.19

Since for everyx, y∈J0, ux,yCτx, y, we have up≤maxφ

C, Mp

:Rp. 3.20

(8)

Set

U

uC0:upRp 1∀p∈N

. 3.21

We will show thatN : UCpis a contraction map. Indeed, considerv, wU. Then for eachx, y∈0, p, we have

Nv x, y

Nw x, y

≤ 1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1f

s, t, vs,t

f

s, t, ws,tdt ds

≤ 1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

lp,qs, tvs,tws,t

Cdt ds

lppr1 r2

Γr1 1Γr2 1v−wp.

3.22

Thus,

Nv−Nwplppr1 r2

Γr1 1Γr2 1v−wp. 3.23 Hence by3.9,N:UCpis a contraction. By our choice ofU, there is nounUnsuch thatu λNu, forλ ∈ 0,1. As a consequence ofTheorem 2.3, we deduce thatN has a unique fixed pointuinUwhich is a solution to problem1.1–1.3.

Now we present a global existence and uniqueness result for the problem1.5–1.7.

Definition 3.5. A functionuC0 such that the mixed derivativeD2xyux, y−gx, y, ux,y exists and is integrable onJis said to be a global solution of1.5–1.7ifusatisfies equations 1.5and1.7onJand the condition1.6onJ.

LetfL1J0,Rn, g ∈ACJ0,Rnand consider the following linear problem

cDr0 u

x, y

g x, y

f x, y

;

x, y

J0, ux,0 ϕx, u

0, y ψ

y

; x, y∈ 0, p

, 3.24

withϕ0 ψ0.

For the existence of solutions for the problem 1.5–1.7, we need the following lemma.

Lemma 3.6. A functionu∈ACJ0,Rnis a global solution of problem3.24if and only ifux, y satisfies

u x, y

μ x, y

g x, y

gx,0−g 0, y

g0,0 I0r f

x, y

;

x, y

J0. 3.25

(9)

Proof. Letux, ybe a solution of problem3.24. Then, taking into account the definition of the fractional Caputo derivative, we have

I01−rD2xy u

x, y

g x, y

f x, y

. 3.26

Hence, we obtain

I0rI01−rDxy2 u

x, y

g x, y

I0rf

x, y

, 3.27

then,

I01Dxy2 u

x, y

g x, y

I0rf

x, y

. 3.28

Since

I01D2xy u

x, y

g x, y

u

x, y

g x, y

ux,0−gx,0

u

0, y

g

0, y

u0,0−g0,0

, 3.29

we have u

x, y μ

x, y g

x, y

gx,0−g 0, y

g0,0 I0r f

x, y

. 3.30

Now, letux, ysatisfy3.25. It is clear thatux, ysatisfies3.24.

As a consequence ofLemma 3.6we have the following result.

Lemma 3.7. The functionu∈ACJ0,Rnis a global solution of problem1.5–1.7if and only ifu satisfies the equation

u x, y

1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1 f

s, t, us,t ds dt μ

x, y g

x, y, ux,y

g

x,0, ux,0

g

0, y, u0,y g

0,0, u0,0 ,

3.31

for allx, y∈J0and the condition1.6onJ.

Theorem 3.8. Assume thatH1,H2, and the following condition holds

H3For each p 1,2, . . ., there exists a constant cp with 0 < cp < 1/4 such that for each x, y∈J0, one has

g x, y, u

g

x, y, vcpu−vC, for eachu, v∈ C. 3.32

(10)

If

4cp

lppr1 r2

Γr1 1Γr2 1<1, 3.33 then there exists a unique solution for IVP1.5–1.7on−α,∞×−β,∞.

Proof. Transform the problem1.5–1.7into a fixed point problem. Consider the operator N1:C0C0defined by,

N1u x, y

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

⎪⎪

φ

x, y

,

x, y

J, μ

x, y g

x, y, ux,y

g

x,0, ux,0

−g

0, y, u0,y g

0,0, u0,0 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1 f

s, t, us,t

dt ds, x, y

J.

3.34 FromLemma 3.7, the fixed points ofN1are solutions to problem1.5–1.7. In order to use the nonlinear alternative, we will obtain a priori estimates for the solutions of the integral equation

u x, y

λ μ

x, y g

x, y, ux,y

g

x,0, ux,0

g

0, y, u0,y g

0,0, u0,0 λ

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1f

s, t, us,t

dt ds, 3.35

for someλ∈0,1. Then, usingH1–H3and3.16we get for eachx, y∈J0, u

x, yμ

x, y fpr1 r2 Γr1 1Γr2 1 g

x, y, ux,y g

x,0, ux,0 g

0, y, u0,y g

0,0, u0,0 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1

lps, tτs, tdt ds,

3.36 then, we obtain

u

x, yμ

x, y fpr1 r2 Γr1 1Γr2 1 4cpτ

x, y g

x, y,0 gx,0,0 g

0, y,0 g0,0,0 lp

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1

τs, tdt ds.

3.37

(11)

Replacing3.37in the definition ofτx, ywe get

τ x, y

≤ 1 1−4cp

μ

x, y fpr1 r2

Γr1 1Γr2 1 4g

lp Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

τs, tdt ds,

3.38

wherelplp/1−4cpandgpsupx,y∈J

0gx, y,0.

ByLemma 2.4, there exists a constantδδr1, r2such that τp≤ 1

1−4cp μ

p

fpr1 r2

Γr1 1Γr2 1 4gp

×

⎣1 δlp Γr1 1Γr2 1

⎦:Dp.

3.39

Then, from3.37and3.39, we get upμ

p

fpr1 r2

Γr1 1Γr2 1 4gp 4cpDp Dplp

Γr1 1Γr2 1 :Dp.

3.40

Since for everyx, y∈J0, ux,yCτx, y, we have up≤max

φC, Dp

:Rp. 3.41

Set

U1

uC0:upRp 1 ∀p1,2, . . .

. 3.42

Clearly,U1is a closed subset ofC0. As inTheorem 3.4, we can show thatN1 :U1C0is a contraction operator. Indeed

N1v−N1wp

4cp lppr1 r2 Γr1 1Γr2 1

v−wp 3.43

for eachv, wU1 andx, y ∈ J0. From the choice ofU1, there is nounUn1 such that uλN1u, for someλ ∈0,1. As a consequence ofTheorem 2.3, we deduce thatN1has a unique fixed pointuinU1which is a solution to problem1.5–1.7.

(12)

4. The Phase Space B

The notation of the phase spaceBplays an important role in the study of both qualitative and quantitative theory for functional differential equations. A usual choice is a seminormed space satisfying suitable axioms, which was introduced by Hale and Katosee 47. For further applications see, for instance, the books48–50and their references.

Inspired by47, Człapi ´nski40introduced the following construction of the phase space. For anyx, y∈J0denoteEx,y: 0, x×{0}∪{0}×0, y, furthermore in casexyp we write simplyE. Consider the spaceB,·,·Bis a seminormed linear space of functions mapping−∞,0×−∞,0intoRn, and satisfying the following fundamental axioms which were adapted from those introduced by Hale and Kato for ordinary differential functional equations.

A1Ifz : −∞, p×−∞, p → Rncontinuous onJ0and zx,yB, for allx, y ∈ E, then there are constants H, K, M > 0 such that for anyx, y ∈ J0 the following conditions hold:

izx,yis inB;

iizx, y ≤Hzx,yB, and

iiizx,yBKsups,t∈0,x×0,yzs, t Msups,t∈Ex,yzs,tB.

A2For the functionz·,·inA1, zx,yis aB-valued continuous function onJ0. A3The spaceBis complete.

Now, we present some examples of phase spacessee40.

Example 4.1. LetBbe the set of all functionsφ:−∞,0×−∞,0 → Rnwhich are continuous on−α,0×−β,0,α, β≥0, with the seminorm

φ

B sup

s,t∈−α,0×−β,0

φs, t. 4.1

Then, we haveH K M 1. The quotient spaceB B/ · B is isometric to the space C−α,0×−β,0,Rn of all continuous functions from −α,0×−β,0 into Rn with the supremum norm, this means that partial differential functional equations with finite delay are included in our axiomatic model.

Example 4.2. LetCγ be the set of all continuous functions φ : −∞,0×−∞,0 → Rn for which a limit lims,t → ∞eγs tφs, texists, with the norm

φ

Cγ sup

s,t∈−∞,0×−∞,0eγs tφs, t. 4.2 Then we haveHKM1.

Example 4.3. Letα, β, γ ≥0 and let φ

CLγ sup

s,t∈−α,0×−β,0

φs, t 0

−∞eγs tφs, tdt ds 4.3

(13)

be the seminorm for the space CLγ of all functionsφ : −∞,0×−∞,0 → Rn which are continuous on−α,0×−β,0measurable on−∞,−α×−∞,0∪−∞,0×−∞,−β, and such thatφCLγ <∞. Then,

H1, K

0

−α

0

−βeγs tdt ds, M2. 4.4

5. Global Result for Infinite Delay

In this section we present a global existence and uniqueness result for the problems1.8–

1.10and1.12–1.14. Let us define the space Ω:

u:R2−→Rn:ux,yBfor x, y

E0, u|JCJ,Rn

, 5.1

whereE0: 0,∞× {0} ∪ {0} ×0,∞.

Definition 5.1. A functionu∈Ωsuch that its mixed derivativeD2xyexists and is integrable on J is said to be a global solutionis of1.8–1.10ifusatisfies equations1.8and1.10onJ and the condition1.9onJ.

For eachp∈N, we consider following set, Cp u:

−∞, p

×

−∞, p

−→Rn:uBCJ0,Rn, ux,y0 for x, y

E

, 5.2

and we define in C0:

u:R2−→Rn:uBC0,∞×0,∞,Rn, ux,y0 for x, y

E0

5.3

the seminorms by

up sup

x,y∈E

ux,y

B sup

x,y∈J0

u x, y sup

x,y∈J0

u

x, y, uCp.

5.4

Then,C0is a Fr´echet space with the family of seminorms{up}.

Theorem 5.2. Assume that

H1the functionf:J×B → Rnis continuous and

H2for eachp∈N, there existslpCJ0,Rnsuch that for andx, y∈J0 f

x, y, u

f

x, y, vlp x, y

u−vB, for eachu, vB. 5.5

(14)

If

Klppr1 r2

Γr1 1Γr2 1 <1, 5.6 where

lp sup

x,y∈J0

lp x, y

, 5.7

then, there exists a unique solution for IVP1.8–1.10onR2.

Proof. Transform the problem1.8–1.10into a fixed point problem. Consider the operator N:Ω → Ωdefined by

Nu x, y

⎧⎪

⎪⎩ φ

x, y

,

x, y

J, μ

x, y 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1 f

s, t, us,t

dt ds;

x, y

J.

5.8

Letv·,·:R2 → Rnbe a function defined by

v x, y

⎧⎨

φ

x, y ,

x, y

J, μ

x, y ,

x, y

J. 5.9

Then,vx,yφfor allx, y∈E0. For eachwCJ,Rnwithwx, y 0; for allx, y∈E0, we denote bywthe function defined by

w x, y

⎧⎨

0,

x, y

J, w

x, y ,

x, y

J. 5.10

Ifu·,·satisfies the integral equation,

u x, y

μ

x, y 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1f

s, t, us,t

dt ds, 5.11

we can decomposeu·,·asux, y wx, y vx, y;x, y ≥0, which implies thatux,y wx,y vx,y, for everyx, y≥0, and the functionw·,·satisfies

w x, y

1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1 f

s, t, ws,t vs,t

dt ds. 5.12

(15)

Let the operatorP:C0C0be defined by Pw

x, y

1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

×f

s, t, ws,t vs,t

dt ds;

x, y

J.

5.13

Obviously, the operatorNhas a fixed point is equivalent toPhaving a fixed point, and so we turn to prove thatPhas a fixed point. We will use the alternative to prove thatPhas a fixed point. Letwbe a possible solution of the problemw Pwfor some 0 < λ <1. This implies that for eachx, y∈J0, we have

w x, y

λ Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1 f

s, t, ws,t vs,t

dt ds. 5.14

This implies byH1that w

x, yfppr1 r2 Γr1 1Γr2 1

1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

lps, tws,t vs,t

Bdt ds,

5.15

where

fpsup f

x, y,0: x, y

J0

. 5.16

But

ws,t vs,t

Bws,t

B vs,t

B

K sup u

s,t

: s,t

∈0, s×0, t

B Kφ0,0.

5.17

If we namezs, tthe right-hand side of5.17, then we have ws,t vs,t

Bzs, t. 5.18

Therefore, from5.15and5.18we get w

x, yfppr1 r2 Γr1 1Γr2 1

1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

lps, tzs, tdt ds.

5.19

(16)

Replacing5.19in the definition ofw, we have that z

x, yKfppr1 r2

Γr1 1Γr2 1

B

Klp Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

zs, tdt ds.

5.20

ByLemma 2.4, there exists a constantδδr1, r2such that zp

Kfppr1 r2

Γr1 1Γr2 1

B

×

1 δKlp

Γr1 1Γr2 1

:M.

5.21

Then, from5.19, we have

wpM lppr1 r2 Γr1 1Γr2 1

fppr1 r2

Γr1 1Γr2 1 :M. 5.22

Since for everyx, y∈J0, wx,yBzx, y, we have wp ≤maxφ

B,M

:R. 5.23

Set

U

wC0:wpR 1 ∀p∈N

. 5.24

We will show thatP:UCpis a contraction operator. Indeed, considerw, wU. Then for eachx, y∈J0, we have

Pw x, y

Pw x, y

≤ 1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

×f

s, t, ws,t vs,t

f

s, t, ws,t vs,tdt ds

≤ 1 Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

lps, tws,tws,t

Bdt ds

K lppr1 r2

Γr1 1Γr2 1w−wp.

5.25

(17)

Thus,

Pw−Pw

pKlppr1 r2

Γr1 1Γr2 1w−wp. 5.26

Hence by5.6,P : UCpis a contraction. By our choice ofU, there is nownUn such thatwλPw, forλ∈0,1. As a consequence ofTheorem 2.3, we deduce thatNhas a unique fixed point which is a solution to problem1.8–1.10.

Now, we present an existence result for the problem1.12–1.14.

Definition 5.3. A functionu ∈Ωsuch that the mixed derivativeDxy2 ux, y−gx, y, ux,y exists and is integrable on J is said to be a global solutionis of 1.12–1.14 if u satisfies equations1.12and1.14onJand the condition1.13onJ.

Theorem 5.4. Letf, g:J×B → Rnbe continuous functions. Assume thatH1, H2, and the following condition hold.

H3For eachp 1,2, . . ., there exists a constantcpwith 0 < Kcp < 1/4 such that for any x, y∈J0, one has

g x, y, u

g

x, y, vcpu−vB, for anyu, vB. 5.27 If

4cp Klppr1 r2

Γr1 1Γr2 1 <1, for eachp∈N, 5.28

then, there exists a unique solution for IVP1.12–1.14onR2. Proof. Consider the operatorN1:Ω → Ωdefined by

N1u x, y

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩ φ

x, y

,

x, y

J, μ

x, y g

x, y, ux,y

g

x,0, ux,0

−g

0, y, u0,y g

0,0, u0,0 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1

×f

s, t, us,t

dt ds,

x, y

J.

5.29

(18)

In analogy toTheorem 5.2, we consider the operatorP1 :C0C0defined by

P1w x, y

g

x, y, wx,y vx,y

g

x,0, wx,0 vx,0

g

0, y, w0,y v0,y g

0,0, w0,0 v0,0 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1

×f

s, t, ws,t vs,t

dt ds, x, y

J.

5.30

In order to use the nonlinear alternative, we will obtain a priori estimates for the solutions of the integral equation

w x, y

λ g

x, y, wx,y vx,y

g

x,0, wx,0 vx,0

−g

0, y, w0,y v0,y g

0,0, w0,0 v0,0 λ

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1f

s, t, ws,t vs,t dt ds,

5.31

for someλ∈0,1. Then fromH1–H3,5.15, and5.18we get for eachx, y∈J0, w

x, yfppr1 r2

Γr1 1Γr2 1 4cpz x, y g

x, y,0 gx,0,0 g

0, y,0 g0,0,0 1

Γr1Γr2 x

0

y

0

x−sr1−1

ytr2−1lps, tzs, tdt ds.

5.32

Replacing5.32in the definition ofzx, y, we get

z x, y

≤ 1

1−4Kcp

B 4Kφ0,0 4Kg

0,0, φ0,0 4Kgp Kfppr1 r2

Γr1 1Γr2 1

!

lp Γr1Γr2

x

0

y

0

x−sr1−1

ytr2−1

zs, tdt ds,

5.33

wherelpx, y lp/1−4Kcpandgpsup{gx, y,0:x, y∈J0}.

Odkazy

Související dokumenty

Characteristic Cauchy problem, Darboux problems, Sobolev problem, nonlocal problems, multidimensional hyperbolic equations and systems, global and local solvability,

Key words and phrases: abstract multi-term fractional differential equations, Caputo frac- tional derivatives, degenerate (a, k)-regularized C-resolvent families, well-posedness,

In this paper, we give sufficient conditions to get the existence of mild so- lutions for two classes of first order partial and neutral of perturbed evolution equations by using

A system of partial differential equations is said to be of finite type if every possible derivative of some order, say r, can be solved for in terms of lower order derivatives

Initial value problem, fractional differen- tial equations, impulses, Caputo fractional derivative, fractional integral, nonlocal conditions, existence, uniqueness, fixed point.. α

In the second chapter, one – dimensional stochastic differential equations are introduced, we touch upon the questions of existence and uniqueness of solutions in full

Che, Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, Nonlinear Anal. Dong, Periodic boundary value

This is the continuation of an investigation of basic boundary value problems for first order complex model partial differential equations.. Model second order equations are the