• Nebyly nalezeny žádné výsledky

] Mass of CND [M SUN

N/A
N/A
Protected

Academic year: 2022

Podíl "] Mass of CND [M SUN"

Copied!
28
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

The Galactic Centre

Determination of the Mass Distribution in the Galactic Centre from Stellar Motions

Jaroslava Schovancov ´a, Ladislav ˇSubr

Astronomical Institute, Charles University in Prague Argelander Institute for Astronomy, University of Bonn

(2)

Where is the Galactic Centre?

Genzel et al. (2003)

◮ dynamical centre of Galaxy

◮ R0 = (7.62 ± 0.32) kpc

Eisenhauer et al. (2005)

◮ Celestial position: Sgr

α= 17h45m40s, δ= -2900’ 28" (J2000.0)

Reid & Brunthaler (2004)

◮ harbours

⊲ super-massive black hole

⊲ stellar clusters

young and old stars

⊲ ISM

. – p.1

(3)

The Central Body: Sgr A*

◮ Detection in radio: Balick & Brown (1974)

◮ Detection in NIR: Becklin & Neugebauer (1975)

◮ Compact radio source

◮ Rejected Candidates: would have lower luminosity and density than observed

⊲ Stellar cluster of neutron stars and white dwarfs

⊲ Fermion ball

⊲ Boson star

◮ Super-massive black hole

M = (3.61 ± 0.32) × 106M Eisenhauer et al. (2005)

(4)

Stars and Gas in the GC

Genzel et al. (2003)

◮ Length scaling:

1 " =b 0.037 pc

◮ Young stars in central 1 "

◮ Stellar disks of young stars inside 12 "

◮ Circum-nuclear ring of molecular gas, radius 45 "

◮ Spherical cluster of old stars in central 100 "

. – p.3

(5)

Cluster of Old Stars

Genzel et al. (2003)

◮ Old, metal-rich stars, 1-10 Gyr

◮ Broken power-law cusp:

ρ(r) ∝ rα, Rbr = (6±1) ”

α =

(1.19 ± 0.05 r ≤ Rbr 1.75 ± 0.05 r > Rbr

Schödel et al. (2007)

◮ Mass 1 M inside 2 pc

(6)

The Circum-nuclear Disk (CND)

Christopher et al. (2005)

◮ Molecular ring:

HCN and HCO+, . . .

◮ Well defined radius 1.6 pc

◮ Uncertain total mass:

MCND ≈ 104 M

Genzel et al. (1985) MCND ≈ 106 M

Christopher et al. (2005)

◮ Considered as a gas source for star formation in the GC

. – p.5

(7)

The CND Mass

100 1000 10000 100000 1e+06 1e+07

1980 1985 1990 1995 2000 2005 2010 Mass of CND [M SUN]

Year

CND mass estimates over past three decades

Neutral gas Ionized gas Neutral and ionized Not specified

(8)

Planar Structures in the GC

Paumard et al. (2006)

◮ Two coherent disks of massive O- & B-type stars 0.1 pc;

Genzel et al. (2003), Ghez et al. (2005)

◮ Well defined inner (0.04 pc) and outer (0.5 pc) radii

◮ Geometrically thick:

h/R ∼ 0.13

. – p.7

(9)

Stellar Disks in the Galactic Centre

◮ Young stars: (6 ± 2) Myr recent star formation Paumard et al. (2006)

◮ Similar disks detected in the centre of M31 Bender et al. (2005)

◮ Flat mass function, mass 104 M

◮ Significant eccentricities for some of stellar orbits

◮ Clockwise disk (CWS): erms ∈ [0.2; 0.3]

Paumard et al. (2006), Beloborodov et al. (2006)

◮ Counter-clockwise disk (CCWS): erms ∈ [0.6; 0.7]

◮ Hot topic: origin?

(10)

The Observed Angular Momentum

-1.5 -1 -0.5 0 0.5 1 1.5

0 2 4 6 8 10 12

j = J z/J z,max

p [arcsec]

Genzel et al. (2003), Paumard et al. (2006) j = Jz

Jz, max = xvy − yvx

q(x2 + y2)(vx2 + vy2) . – p.9

(11)

Cosine Pattern of the Disk

◮ Normal vector to the disk

~n = (sin i cos Ω, − sin i sin Ω, − cos i)

◮ Velocity vector of the k-th star

~vk = k~vkk(sin θk cos φk, sin θk sin φk, cos θk)

~n · ~vk = 0 ⇒ cotg θk = tg i cos(Ω + φk)

Paumard et al. (2006) . – p.10

(12)

Determination of the Mass Distribution in the Galactic Centre from Stellar Motions

. – p.11

(13)

Model of the GC

◮ System dominated by the SMBH central potential

◮ Two “perturbations”:

⊲ spherical stellar cluster

ΦSPHE(r) = 4πGρ0r0α

(α − 2)(α − 3)r2α

⊲ axi-symmetrical CND

ΦCND(r) = −2Gλ

raCND

R kK(k),

k2 = f(aCND, zCND, R, Z)

◮ CWS disk considered as a set of test particles

(14)

Thesis Aims

◮ Limit the mass of the CND

◮ Confine the spatial structure of the CWS disk How?

⊲ Deformation of the CWS disk

⊲ Dependence of the deformation on the parameters of the perturbing potentials

⊲ Compare simulation results with observations

. – p.13

(15)

Useful Tools and Techniques

◮ Kozai mechanism, Kozai (1962), Lidov (1962):

⊲ Evolution of a hierarchical triple system; motion of an asteroid under influence of Sun and Jupiter

⊲ Secular evolution of the orbital elements e, i and ω

⊲ Hamiltonian perturbation theory & averaging

technique to get rid of fast-changing variable, the mean anomaly

⊲ Integrals of motion: a, c = √

1 − e2 cosi, Φ¯perturb

⊲ Convenient tool for study of motion of a test

particle in the potential dominated by the central mass and perturbed by an axi-symmetrical

potential and a spherical potential

(16)

The Φ ¯ perturb Isocontours

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

c=0.0

e sinω

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

c=0.2

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

c=0.4

e sinω

e cosω

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1 c=0.8 e cosω

MCND/M = 0.01, aCND/a = 2, c = 0.2 . – p.15

(17)

Secular Evolution of Orbits

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0 5 10 15 20 25

<e>(t)

Time [103 P]

60 70 80 90 100 110 120

0 5 10 15 20 25

<ω>(t) [o ]

Time [103 P]

0 5 10 15 20 25

45 50 55 60 65 70 75 80

<i>(t) [o ]

Time [103 P]

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

e sinω

e cosω

c=0.2

(18)

Composite Perturbation

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

MCND/M = 0.01, MCND/MSPHE = 0.5, aCND/a = 2, c = 0.2

. – p.17

(19)

The GC Model

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

MCND/M = 0.33, MCND/MSPHE = 0.33, aCND/a = 4.5, c = 0.1

(20)

The “Quadrupole Equations”

de

dτ = +15 8 e

q

1 − e2 sin2(i) sin(2ω) di

dτ = −15 8

e2

p1 − e2 cos(i) sin(i) sin(2ω) dω

dτ = +3 4

p 1

1 − e2

2(1 − e2) + 5 sin2(ω)

e2 − sin2(i)

dΩ

dτ = −3 4

cos(i)

p1 − e2 [1 + 4e2 − 5e2 cos2(ω)]

. – p.19

(21)

Evolution of the Orbital Elements

◮ Disk deformation depends more on Ω than on e, i, ω

◮ Quadrupole equations DO NOT describe system with a heavy spherical perturbation!

⇒ alternative timescale estimate necessary P =?

◮ P = f(MCND; MSPHE, αSPHE; a,0, e,0, i,0, ω,0)

(22)

Exploring the P Dependences

Dependence on

◮ MCND: P ∝ MCND1

◮ a,0: P ∝ a 3/2

◮ e,0: P ∝ q

1e,0

1+e,0

◮ i,0: P ∝ |cos i,0|1

◮ MSPHE, αSPHE: no dependence has been found for mass range MSPHE/M ∈ [0.5; 4] and profiles

αSPHE ∈ [1.0; 2.0]

. – p.21

(23)

The P Estimate

P Myr

=

a aCND

3/2

MCND M

1

1

| cos i0|

r1 − e0

1 + e0 fn

(24)

Isocontours of P

0.01 0.1 1 10

0.001 0.01 0.1 1

M CND [M BH]

cos i0

Formula result Numerical result MCND, Christopher et al., 2005

. – p.23

(25)

FIG: jak vypada jz(p) pro ruzne konfig

– kumulovane cetnosti

(26)

FIG: The Modelled Angular Momentum

TODO: obrazky pro par bodu podel P Omega=108 Myr, par bodu pro delsi a par bodu pro kratsi periodu.

– snapshot disku – odpovidajici jz(p)

– Aitoffova projekce ~j tehoz?

. – p.25

(27)

Conclusions

TODO: – zminit nutnost vyssich excentricit nez

"pozorovanych"

– mass of CND is ...

– pocatecni rozevreni

(28)

Thank you for your attention!

. – p.27

Odkazy

Související dokumenty

Center for Economic Research and Graduate Education – Economics Institute A joint workplace of Charles University in Prague and the Czech Academy of Sciences Dedicated to excellence

Miroslav Vaněk teaches at Charles University in Prague, and is head of the Oral History Center at the Institute of Contemporary History, Czech Academy of Sciences.. It was

Miroslav Vaněk teaches at Charles University in Prague, and is head of the Oral History Center at the Institute of Contemporary History, Czech Academy of Sciences.. It was

Johannesburg. Charles University in Prague, Faculty of Social Sciences, Institute of International Relations. Considering present day violence and insecurity in our city

1 Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Czech Republic.. 2 Institute of Hydrodynamics, Academy of Sciences of the Czech

1 Department of Paediatrics, Charles University in Prague, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.. 2 Institute

Institute of Mathematics of the Czech Academy of Sciences Computer Science Institute of Charles University in Prague November 11, 2020... Monotone

This is the main reason why we decided to observe this object, in order to obtain a reliable estimate of the resulting accuracy in the size determination from thermal models and