• Nebyly nalezeny žádné výsledky

High altitude disease complication

N/A
N/A
Protected

Academic year: 2022

Podíl "High altitude disease complication"

Copied!
118
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

Disorders of ventilation to

perfusion matching in lungs

(2)

C + O2 CO2

O2 CO2

(3)

Saccharides Fats Proteins

cell

+ O2 CO2

2 CO2

H2O

mitochondrion

mitochondrion

(4)

mitochondrion Endoplasmic

reticulum

peroxisome

mitochondrion nucleus

lysosome

Golgi

Apparatus vesicle

Plasma membrane

(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

pO2 kidneys erythropoetin

Bone marrow

erythropoesis

Saccharides Fats Proteins

cell

+ O2 CO2 CO2

H2O

mitochondrion

mitochondrion

Histotoxic Hypoxia

Respiratory Hypoxia High Altitude Hypoxia

O2

Circulatory Hypoxia (ischemic)

Hypoxia from Anemia

(17)

pO2 kidneys erythropoetin

Bone marrow

erythropoesis

Saccharides Fats Proteins

cell

+ O2 CO2 CO2

H2O

mitochondrion

mitochondrion

O2

(18)

High Altitude Hypoxia

0 100 200 300 400 500 600 700 800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pokles barometrického tlaku s výškou

Climbing

Barometric pressure drop

(19)

0 20 40 60 80 100 120 140 160

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PO2 v insp. vzduchu

Climbing

Barometric pressure drop

Fall PO2 in inspired air

(20)

High Altitude Hypoxia Climbing

Barometric pressure drop

Fall PO2 in inspired air

Fall alveolar PO2

PO2 v

inspir. vzd uchu

PAO2 - aklimatizovaní PAO2 – akutní expozice

PAO2 – fully acclimated

PAO2 – acute exposition PO2 v inspir. vzduchu

Fall arterial PO2

(21)
(22)
(23)
(24)
(25)

Climbing

Barometric pressure drop

Fall PO2 in inspired air

Fall alveolar PO2

Fall arterial PO2

Hyperventilation

Hypocapnia

Alkalosis Shift of oxyhemoglobin

saturation curve to left Impairment of oxygen

release in tissue

pO2 SO2

O2 release

O2 release

Respiratory centre stimulation

(26)

High Altitude Hypoxia Climbing

Barometric pressure drop

Fall PO2 in inspired air

Fall alveolar PO2

Fall arterial PO2

Hyperventilation

Hypocapnia

Alkalosis Shift of oxyhemoglobin

saturation curve to left Impairment of oxygen

release in tissue Blood

acidifacion Shift of oxyhemoglobi

n saturation curve to right

Increase of oxygen release in tissue

pO2 SO2

O2 release

O2 release

Respiratory centre stimulation

Kidney response to alkalemia:

increase of bicarbonate

excretion

ADAPTATION Hypoxia improvement

(27)

Climbing

Barometric pressure drop

Fall PO2 in inspired air

Fall alveolar PO2

Fall arterial PO2

Hyperventilation

Hypocapnia

Alkalosis Shift of oxyhemoglobin

saturation curve to left Impairment of oxygen

release in tissue

Respiratory centre stimulation

Kidney response to alkalemia:

increase of bicarbonate

excretion

ADAPTATION

Decrease bicarbonate resorption in proximal tubule,

bicarbonate

excretion increases Acetazolamid Blood

acidifacion Shift of oxyhemoglobi

n saturation curve to right

Increase of oxygen release in tissue

Hypoxia improvement

(28)

High Altitude Hypoxia Climbing

Barometric pressure drop

Fall PO2 in inspired air

Fall alveolar PO2

Fall arterial PO2

Hyperventilation

Hypocapnia

Alkalosis Shift of oxyhemoglobin

saturation curve to left Impairment of oxygen

release in tissue

Respiratory centre stimulation

Kidney response to alkalemia:

increase of bicarbonate

excretion

ADAPTATION

Hyperventilation water loss Dehydration

Hemoconcentration Hematocrit

increase

Stimulation of hemopoiesis

Erythropoetin production Blood

acidifacion Shift of oxyhemoglobi

n saturation curve to right

Increase of oxygen release in tissue

Hypoxia improvement

(29)

HEADACHE, INSOMNIA, ANOREXIA, TIREDNESS

Hypocapnia Hypoxia

Brain

vasiconstriction (hypocapnic brain

vasoconstriction lasts only 2-3 days)

Brain vasodilatation Flow increase Intracerebral hypertension

(30)

High Altitude Hypoxia

Mount Everest climbing

(31)

High altitude disease complication

HIGH ALTITUDE PULMONARY EDEMA

HIGH ALTITUDE BRAIN EDEMA

RIGHT VENTRICULAR INSUFFICIENCY

(32)

High Altitude Hypoxia

Alveolar hypoxia

HIGH ALTITUDE PULMONARY EDEMA

(33)

Alveolar hypoxia

HIGH ALTITUDE PULMONARY EDEMA

inferior

vasoconstriction Pressure

Unevennes hypoxic rise

vasoconstriction of lung arterioles Increase of pulmonary

arterial pressure

(34)

Hypoxie výšková

Alveolar hypoxia

HIGH ALTITUDE PULMONARY EDEMA

inferior

vasoconstriction Pressure

rise

Pressure

Unevennes hypoxic rise

vasoconstriction of lung arterioles Increase of pulmonary

arterial pressure

Pressure rise in unprotected capillaries

(35)

Alveolar hypoxia

HIGH ALTITUDE PULMONARY EDEMA

inferior

vasoconstriction Pressure

rise

Pressure rise

Edema

Unevennes hypoxic

vasoconstriction of lung arterioles Increase of pulmonary

arterial pressure

Pressure rise in unprotected capillaries

Exudation

(36)

Hypoxie výšková

Alveolar hypoxia Unevennes hypoxic

vasoconstriction of lung arterioles Increase of pulmonary

arterial pressure

Pressure rise in unprotected capillaries

Exudation Basement membrane

damage Neutrophiles activation

Inflamatory factors release

Thrombocyte activation

Fibrine thrombi

inferior

vasoconstriction Pressure

rise

Pressure rise

Edema

HIGH ALTITUDE PULMONARY EDEMA

(37)

Alveolar hypoxia

HIGH ALTITUDE LUNG ADAPTATION

(38)

High Altitude Hypoxia

Alveolar hypoxia

HIGH ALTITUDE LUNG ADAPTATION Unevennes hypoxic

vasoconstriction of lung arterioles Increase of pulmonary

arterial pressure

inferior

vasoconstriction Pressure

rise

(39)

Alveolar hypoxia

Gradual muscular hypertrophy even in capillaries with inferior

vasoconstriction

Pulmonary vasculature remodelation – pulmonary

vasoconstriction is uniform All capillaries are protected from high pressure

transmission from arteries to capillaries

HIGH ALTITUDE LUNG ADAPTATION

inferior

vasoconstriction Pressure

Unevennes hypoxic rise

vasoconstriction of lung arterioles Increase of pulmonary

arterial pressure

(40)

High Altitude Hypoxia

Alveolar hypoxia

Gradual muscular hypertrophy even in capillaries with inferior

vasoconstriction

Pulmonary vasculature remodelation – pulmonary

vasoconstriction is uniform All capillaries are protected from high pressure

transmission from arteries to capillaries

HIGH ALTITUDE LUNG ADAPTATION Unevennes hypoxic

vasoconstriction of lung arterioles Increase of pulmonary

arterial pressure

inferior

vasoconstriction Pressure

rise

COMPLICATION:

RIGHT VENTRICULAR INSUFFICIENCY

(41)

Hypoxia

Big stimulus for vasodilatation and hyperemia Hypocapnia

Hypocapnic stimulus for

brain

vasoconstrictio n

Hypocapnic stimulus for

brain

vasoconstrictio n lasts only 2-3-

days

Increase of brain vascular

flow

HIGH ALTITUDE BRAIN EDEMA

(42)

1. Ventilation

CO2 O2

CO2

Respiratory Hypoxia (Hypoxic) High Altitude Hypoxia

O2

2. Perfusion

3. Diffusion

(43)

What is the function of lungs?

Alveolus

Ventilation – mechanical function of the lung – get air in and out

Perfusion with blood – get blood in and out

Diffusion – get gas molecules from air to blood and back

Matching of ventilation and perfusion

(44)

Possible respiratory system disturbances

• // ventilation

• //

perfusion

• // distribution of ventilation and per-fusion

= ventilation perfusion mismatch

• // diffusion

Important: Ventilation, perfusion and their distribution are feedback regulated

processes.

Disturbance:

1. In the effector part (lungs, resp. muscles for ventilation, heart for perfusion)

2. In the regulator part (sensors, CNS eg. in uremia, liver in hepatopulmonary

syndrome)

(45)

The overall measure of respiratory system function

pO2 & pCO2 in arterial blood - („ Astrup “)

• O2 solubility in water is low => need of Hemoglobin

pO2 = 13,3 kPa = 100 Torr

pCO2 = 5,3 kPa = 40 Torr

(1 kPa = 10 cm H2O = 7,6 mmHg or Torr)

(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)

External intecost. m.

Internal intercost. m.

Internal intercost. m.

inspiration

expiration

(67)
(68)

Alveolar ventilation

VE=VD+VA

FRC = Function residual capacity

(69)
(70)
(71)

Alveolar ventilation

VCO2 = F

A

CO2 * VA VA = VCO2/F

A

CO2

VA = k

1

×VCO2/P

A

CO2

P

A

CO2

[torr]

= 0,863*VCO2

[ml/min STPD]

/VA

[l/min BTPS]

P

A

CO2 = F

A

CO2×Barometric pressure

P

A

CO2 = k

2

×VCO2/VA

STPD BTPS

P×V (P-PH2O)×VBTPS 760×VBTPS T 273+ t°= R patient = 273

2

FACO2×

VCO2

VA

VCO2

(72)

PaCO2

VA

(73)

VA

P

A

CO2

[torr]

= 0,863*VCO2

[ml/min STPD]

/VA

[l/min BTPS]

E 2 A 2

VO2=ViO2-VEO2

VA

i 2 i 2

ViO2VEO2

F

A

O

2

=F

i

O

2

- VO

2

/VA VO

2

=F

i

O

2

×VA - F

A

O

2

×VA

P

A

O

2

=P

i

O

2

- k×VO

2

/VA

PACO2 PAO2

(74)

PaCO2

VA PaO2

(75)

VA

pCO

2

pO

2

pCO

2

pO

2

VE=VD+VA

pCO

2

Respir. Centre

pO

2

Alveolar Ventilation Controls Rate of Breathing by Influencing pCO2 and pO2

VA

Only whenpO 2

is low

(76)

Why the airplane flies?

(77)

Why the airplane flies?

(78)

Why the airplane flies?

(79)

Narrowing of bronchiole (bronchoconstriction, mucus…)

(80)

Inspiration – the narrowing is opposed by neg. introthoratic pressure

Narrowing of bronchiole (bronchoconstriction, mucus..)

(81)

Expiration – nothing opposes the narrowing of a bronchiole

Narrowing of a bronchiole (bronchoconstriction, mucus..)

(82)

Narrowing of a bronchiole (bronchoconstriction, mucus..)

Forceful expiration - leads to worsening of the obstruction

(83)
(84)

Air Captioning – premature closure of bronchioli

The trapped air The air trapped in alveoli during

expiration exerts pressure on the alveolar membrane

Air captioning

The alveolus doesn’t manage to empty itself, thus, alveolar

ventilation decreases Norm

VA End of expiration

End of inspiration

norm emphysema

VD

VD VA

Tendency to alveolar

membrane destruction and evolution of emphysema bullae, thus enlarging the dead space

(85)
(86)

Non-emphysematous lung

VE = VD + VA

(87)

VE =

VD

+ VA

VE = VD + VA

(88)

Panlobular emphysema

VE =

VD

+ VA

VE = VD + VA

(89)

VA

pCO

2

pO

2

pCO

2

pO

2

VE=VD+VA

pCO

2

Respir. Centre

pO

2

Alveolar Ventilation Controls Rate of Breathing by Influencing pCO2 and pO2

VA

Only whenpO 2

is low

(90)

emphysema compensation

Emphysematous form of the chronic obstructive lung disease

normal

pCO

2 Respiratory centre

normal

pO

2 VE =

VD

+ VA

VE = VD + VA

VE = VD + VA

Normalization of VA

pCO

2

pO

2

„pink puffers“

Normal PaO2 – no hypoxia (until total resp. failure)

Feeling of dyspnoea Greater VE to bring to normal VA

Greater volume must be ventilated per minute Increased respiratory work

Norm Emphysema

VD VA

(91)

obstruction compensation

Obstructive form of the chronic obstructive lung disease

normal

pCO

2 Respir. centre

pO

2stays VE = VD + VA

VE = VD + VA

VE = VD +

VA

Compensatory increase VA

pCO

2

pO

2

„blue bloaters“

Normal PaCO2, lower PaO2 – hypoxia Increased VE in order to increase the VA

obstruction

Alveolar Hypoventilation

VA

(92)

obstruction compensation

Obstructive form of the chronic obstructive lung disease

normal

pCO

2 Respir. centre

pO

2stays VE = VD + VA

VE = VD + VA

VE = VD +

VA

Compensatory increase of VA

pCO

2

pO

2

Normal PaCO2, decreased PaO2 – hypoxia Increased VE in order to increase VA

Why pCO2 “manages”

to normalize and pO2 not?

„blue bloaters“

obstruction

alveolar hypoventilation

VA

(93)

obstruction

pCO

2

pO

2

VA = (VA1 + VA2)

VE = VD + (VA1+VA2) VE = VD + ( VA1 +

VA2

) obstruction VE = VD + VA

VE = VD + VA

Hypoventilated alveolus

pCO

2

pO

2

Hyperventilated alveolus

VA

VA

VA

VA

pO

2

pCO

2

pCO

2

pO

2

Obstructive form of the chronic obstructive lung disease

(94)

pCO

2

pO

2

VE = VD + ( VA1 +

VA2

)

Hypoventilated alveolus

pCO

2

pO

2

Hyperventilated alveolus

VA

VA

VA

VA

VA

VA

Norma

pO2 Total O2

pO2

VA

VA

Norma

pCO2 Total CO2

pCO2 pO2

pCO2

pO

2

pCO

2

pCO

2

pO

2

Obstructive form of the chronic obstructive lung disease

(95)

pCO

2

pO

2

VE = VD + ( VA1 +

VA2

)

Hypoventilated alveolus

pCO

2

pO

2

Hyperventilated alveolus

VA

VA

VA

VA

VA

VA

Norma

pO2 Total O2

pO2

VA

VA

Norma

pCO2 Total CO2

pCO2 norm.

pO2 pCO2

Respir. centre

compensation

VE = VD +

VA1 +

VA2

pO

2

pCO

2

pO

2

pCO

2

VA VA

Compensatory increase of VA1, VA2

pCO2 norm.

pO2

Obstructive form of the chronic obstructive lung disease

(96)

pCO

2

pO

2

VE = VD + ( VA1 +

VA2

)

Hypoventilated alveolus

pCO

2

pO

2

Hyperventilated alveolus

VA

VA

VA

VA

pO2 pCO2

Respir. centre

compensation

VE = VD +

VA1 +

VA2

pO

2

pCO

2

pO

2

pCO

2

VA VA

Compensatory increase of VA1, VA2

pCO2 norm.

pO2

„blue bloaters“

Obstructive form of the chronic obstructive lung disease

(97)

pCO

2

pO

2

VE = VD + ( VA1 +

VA2

)

Hypoventilated alveolus

pCO

2

pO

2

Hyperventilated alveolus

VA

VA

VA

VA

pO2 pCO2

Respir. centre

compensation

VE = VD +

VA1 +

VA2

pO

2

pCO

2

pO

2

pCO

2

VA VA

Compensatory increase of VA1, VA2

pCO2 norm.

pO2

„blue bloaters“

Arteriolar

vasoconstriction in hypoventilated alveoli

Precapillary pulmonary

hypertension Cor pulmonale Right heart insufficiencyy

Edema Decrease inflow

of hypoxic blood

Obstructive form of the chronic obstructive lung disease

(98)

Partial respiratory insufficiency

pCO

2

pO

2

VE = VD + ( VA1 +

VA2

)

Hypoventilated alveolus

pCO

2

pO

2

Hyperventilated alveolus

VA

VA

VA

VA

pO2 pCO2

Respir. centre

compensation

VE = VD +

VA1 +

VA2

pO

2

pCO

2

pO

2

pCO

2

VA VA

Compensatory increase of VA1, VA2

pCO2 norm.

pO2

Partial respiratory insufficiency

Hyperventilated alveoli are able to maintain normal pCO

2

level, but they are not keep up normal level of pO

2

, therefore

pO2 drop

.

Patient suffer from normocapnia

a hypoxia.

(99)

pCO

2

pO

2

VE = VD + ( VA1 +

VA2

)

Hypoventilated alveolus

pCO

2

pO

2

Hyperventilated alveolus

VA

VA

VA

VA

pO2 pCO2

Respir. centre

compensation

VE = VD +

VA1 +

VA2

pO

2

pCO

2

pO

2

pCO

2

VA VA

Compensatory increase of VA1, VA2

pCO2 pO2

Global respiratory infufficiency

Hyperventilated alveoli are unable to maintain normal pCO

2

level,

pCO2 level rises

. Pacient suffer from both hypercapnia a

hypoxia.

Global respiratory insufficiency

(100)

Ventilation-perfusion

VA/Q

VA/Q

(101)

Ventilation-perfusion

VA/Q

VA/Q

(102)

Ventilation-perfusion

VA /

Q

VA/Q

Dead space

(103)

Ventilation-perfusion

VA

/Q

VA

/Q

Right-left shunt

hypoxia

(104)
(105)

interstitium

Starling equilibrium in pulmonary capillaries

Na

+

kapilára

Lymph. vessel

Hydraulic pressures (torr)

+7 -6

+13

Oncotic pressures (torr)

-28 -12 -16

-4

+2

(106)

1

interstitium

2 3

1. – ISF volume increase

Defensive mechanisms against pulmonary edema

Rise oc capillary reapsorbtion

Dilution – drop of ISFoncotic pressure

Rise of hydraulic ISF pressure

2. – increase of ISF volume ISF – storage for edematous fluid 3. – rise of lymhatic flow

Na

+

Left atruim pressure Filtration to alveoli

10 20

5

blood capillary

Lymph. vessel

ARDS

(107)

Acute Respiratory Distress Syndrome ARDS

Tlak v levé síni

10 20

5

ARDS

Acute respiratory distress + risk factor (infection, aspiration, pankreatitis, trauma) Hypoxemia

BIlateral pulmonary inflitration on RTG

Normal right atrial pressure (pulmonary wedge pressure< 18 torr)

(108)

Acute Respiratory Distress

Syndrome ARDS

(109)

Acute Respiratory Distress

Syndrome ARDS

(110)

Acute Respiratory Distress

Syndrome ARDS

(111)

Penetration of protein rich fluid Deposits of fibrine (hyaline membanes)

interstitium

Na

+

Blood capillary

Lymphatic vessel

Entdothelium activation Adhesion of thrombocytes

Activation of coagulation – inhibition of fibrinolysis Neutrophyles activation

Neutrophyles migratio Inflammatory activation of alveolar cells

Surfactant production damage

Activation of alveolar macrophages Collapse of alveoli

VA/Q

hypoxia

Acute Respiratory Distress

Syndrome ARDS

(112)

pO2 ledviny erytropoetin

Kostní dřeň

erytropoeza

Cukry Tuky Bílkoviny

buňka

+ O2 CO2 CO2

H2O

mitochondrie

mitochondrie

O2

O2/CO2 O2/CO2

(113)
(114)

pO2 kidney erythropoetin Bone marrow

erythropoesis

Cell

+ O2 CO2 CO2

H2O

mitochondrie

O2

O2/CO2 O2/CO2

Erytropoeza

Saccharides Fats Proteins

mitochondrion

(115)

VO2

cellular PO2

2

VO2

Critical point

(116)

VO2

cellular PO2 O2

VO2

Critical point VO2

(117)

End capillary PO2

2

VO2 Cellular PO2

3,5kPa 5kPa Critical point

norm

(118)

pO2 kidney erythropoetin Bone marrow

erythropoesis

cell

+ O2 CO2 CO2

H2O

mitochondrie

O2

O2/CO2 O2/CO2

Saccharides Fats Proteins

mitochondrion

Odkazy

Související dokumenty

By testing the effect of soil physicochemical parameters together with altitude on the composition and biovolume of cyanobacterial communities, we found out that despite of

If we know the exact altitude, at the spot where the reference device is placed, with the use of known current barometric pressure (a_p) and the known altitude, we can calculate

Distribution o f the pulmonary vascular resistances We found in the occlusion experiments on adult rats exposed to chronic hypoxia (group AH) that the resistances in

Hypoxic pulmonary vasoconstriction is a chain of events including oxygen sensor, transducer of the information about hypoxia from sensor to effector, and effector (contractile

n High altitude pulmonary edema (HAPE). n High altitude

changes of the lungs + heart + lung vessels -physical examination changes (auscultation), symptoms of right heart failure. -RTG - angiography

vasoconstriction is uniform All capillaries are protected from high pressure. transmission from arteries to

Both chest X-rays and low-dose helical CT scans have been used to find lung cancer early, but the effects of these screening techniques on lung cancer mortality rates had not