• Nebyly nalezeny žádné výsledky

QuantumThermodynamics OldřichSedlák BACHELORTHESIS

N/A
N/A
Protected

Academic year: 2022

Podíl "QuantumThermodynamics OldřichSedlák BACHELORTHESIS"

Copied!
41
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

BACHELOR THESIS

Oldřich Sedlák

Quantum Thermodynamics

Department of Macromolecular Physics

Supervisor of the bachelor thesis: RNDr. Viktor Holubec, Ph.D.

Study programme: Physics

Study branch: General Physics

Prague 2018

(2)

I declare that I carried out this bachelor thesis independently, and only with the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.121/2000 Sb., the Copyright Act, as amended, in particular, the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In ... date ...Prague 19.7.2018 signature of the author

(3)

Title: Quantum Thermodynamics Author: Oldřich Sedlák

Department: Department of Macromolecular Physics

Supervisor: RNDr. Viktor Holubec, Ph.D., Department of Macromolecular Physics Abstract:

Quantum coherence is being viewed as a possible resource that could improve the per- formance of quantum technologies. This thesis analyzes a quantum heat engine model inspired by Dorfman et al. (PNAS vol. 110 no. 8) while using a standard Markovian quantum optical master equation in the Lindblad form. Steady-state coherence arises from the degeneracy of the two upper energy levels and its effects become significant for near-perfect alignment of the associated transition dipole moments. For the maximum alignment, the steady-state current becomes highly dependent on the relative phase and exhibits quantum interference. The performed numerical calculations show some promise of possible enhancement of the current above the classical limit.

Keywords: quantum coherence, quantum thermodynamics, open quantum system

(4)

I would like to express my appreciation to my supervisor RNDr. Viktor Holubec, Ph.D. for going above and beyond in keeping me focused but also for allowing me to delve into parts I found most interesting. I am grateful for his permanent support and dedication in helping me complete this thesis.

(5)

Contents

Introduction 2

1 Theoretical background 3

1.1 Introduction to open quantum systems . . . 3

1.2 Markovian evolution and Lindblad form . . . 4

2 Quantum optical master equation 5 2.1 Microscopic assumptions and derivation . . . 5

2.2 Application to V-type system in single bath . . . 7

3 Quantum heat engine 11 3.1 Introduction . . . 11

3.2 Equations of motion . . . 12

3.3 Solutions to the master equation . . . 14

3.4 Fundamental processes . . . 15

3.5 Alignment of transition dipole moments . . . 16

3.6 Probability currents . . . 16

3.7 Energy currents . . . 18

3.8 Available work at constant temperature . . . 19

3.9 Work rate of the engine . . . 19

3.10 Entropy and efficiency . . . 20

4 Coherence 23 4.1 Dark state of V-type system . . . 23

4.2 Coherence parameters . . . 24

4.3 Dark state of the QHE . . . 25

4.4 Analytically treatable parameter regime . . . 25

4.5 Classical current . . . 25

4.6 Coherent current . . . 27

4.7 Current enhancement . . . 32

Summary 33

Appendix 34

(6)

Introduction

Quantum coherence is being viewed as a possible resource that could improve the per- formance of quantum technologies and attempts are being made to precisely quantify its usefulness [1]. A discovery that sparked research interest in quantum effects in biology was the observation of long-lived coherence in natural light-harvesting systems [2]. Without a doubt, the study of the various quantum effects [3, 4, 5, 6] present in photosynthetic systems could be highly beneficial to the development of new enhanced artificial solar cells and nanotechnologies. For example, in the first phase of photosynthesis antennae complexes harvest solar energy which is used for charge separation carried out by the photosynthetic reaction centre. The quantum efficiency of this process can under certain conditions exceed 95 % [7]. In other words, each absorbed photon almost certainly reaches the reaction centre and drives the separation of charge.

Inspired by the observed coherence phenomena [2], Dorfman et al. have proposed a simple quantum heat engine (QHE) model [8] based on a pair of tightly coupled chloro- phylls at the heart of the reaction centre. In their model, coherence between two popu- lations representing this special pair can boost the classical photocurrent by 27 %. While theoretical results look promising, they (Dorfman et al.) also comment, however, that the quantum coherence effects observed in photosynthetic experiments are studied with coherent laser radiation that might affect the natural conditions of excitation by solar incoherent light.

This thesis further explores the effects of coherence on a very similar model. The first two chapters serve as an introduction of the used Markovian quantum optical master equation, including its application to a simple system. The third chapter introduces the model of the QHE, the equations of motion and the physical quantities used for the analysis of the engine. Finally, the last chapter analyzes the effects of coherence, focusing mainly on the steady-state current in the QHE.

(7)

1. T h e o r e ti c al b a c k g r o u n d

T his c h a pter c o nsists of t w o secti o ns. First, we brie fl y re vie w t he c o nce pt of a n o p e n q u a nt u m s yste m a n d i n t he sec o n d secti o n, we t a ke a l o o k at t he necess ar y ass u m pti o ns re q uire d f or t he vali dit y of o ur M ar k o vi a n descri pti o n of t he d y n a mics.

1. 1 I nt r o d u c ti o n t o o p e n q u a nt u m s y s t e m s

T he m ai n m at he m atic al disti ncti o n b et wee n a n i de alize d cl ose d s yste m a n d a n o p e n q u a n- t u m s yste m is t h at t he H a milt o ni a n d y n a mics of cl ose d s yste ms is re versi ble a n d c a n b e re prese nte d b y u nit ar y tr a nsf or m ati o ns. T his is ge ner all y n ot t he c ase f or o p e n q u a nt u m s yste ms w here we c o nsi der t he i nter acti o ns wit h t he e n vir o n me nt. T he res ulti n g irre- versi ble d y n a mics is t he n ass o ci ate d wit h t he pr o d ucti o n of e ntr o p y. A n o p e n q u a nt u m s yste m is, t heref ore, a s yste m S i nter acti n g wit h a n ot her e xter n al s yste m B w hic h we ge ner all y c all t he e n vir o n m e nt . If a n e n vir o n me nt h as a n i n fi nite n u m b er of de grees of free d o m it is c alle d a res er v oir a n d if a reser v oir is i n a t her m al e q uili bri u m st ate we c all it a h e at b at h or si m pl y a b at h [ 9].

T he i ntr o d ucti o n of t he e n vir o n me nt B t o t he s yste m S e x p a n ds t he Hil b ert s p ace, H = H S ⊗ H B .

C o nse q ue ntl y, t he o p er at or ˆO pre vi o usl y acti n g i n t he Hil b ert s p ace H S nee ds t o b e e x p a n de d o ver t he c o m bi ne d Hil b ert s p ace H wit h t he i de ntit y o p er at or ˆIB of t he e n vi- r o n me nt t o ˆO ⊗ ˆIB . T he e x p ect ati o n val ue is t he n o bt ai ne d as:

O (t) = tr{ ( ˆO ⊗ ˆIB ) ˆρ(t)} = trS{ ˆO ˆρS(t)} ,

w here ˆρ is t he de nsit y m atri x of t he c o m bi ne d s yste m S + B a n d ˆρS is t he re d u ce d d e nsit y m atri x descri bi n g t he o p e n s yste m,

ˆρS (t) = trB { ˆρ(t)} .

T he d y n a mics of t he o p e n s yste m f oll o ws fr o m t he d y n a mics of t he c o m bi ne d s yste m w hic h is g o ver ne d b y its H a milt o ni a n ˆH a n d t he Sc hr ö di n ger e q u ati o n. T his H a milt o ni a n c o nsists of t he self- H a milt o ni a ns of t he o p e n s yste m a n d t he e n vir o n me nt, ˆHS a n d ˆHB , a n d t he H a milt o ni a n ˆHI descri bi n g t he i nter acti o n b et wee n t he t w o s yste ms [ 9],

ˆH = ˆHS ⊗ ˆIB + ˆIS ⊗ ˆHB + ˆHI.

T he e v ol uti o n fr o m ti me t0 t o ti me t c a n b e e x presse d wit h t he e v ol uti o n o p er at or ˆU (t, t0) [ 1 0],

ˆρ(t) = ˆU (t, t0) ˆρ(t0) ˆU (t, t0).

I n t he c ase of a ti me-i n de p e n de nt H a milt o ni a n ˆH , t he o p er at or ˆU (t, t0) h as t he well- k n o w n f or m:

ˆU (t, t0) = e x p − i ˆH (t − t0) , w here is t he re d uce d Pl a nc k c o nst a nt.

(8)

1. 2 M a r k o vi a n e v ol u ti o n a n d Li n d bl a d f o r m

I n ge ner al, t he e v ol uti o n of t he de nsit y m atri x ˆρS c a n de p e n d o n its hist or y (e arlier st ates of t he o p e n s yste m) b ec a use c h a n ges i n t he o p e n s yste m c a n b e re me m b ere d b y t he e n vir o n me nt w hic h c a n, i n t ur n, a ffect t he o p e n s yste m at a l ater ti me.

I n s o me sit u ati o ns, h o we ver, t hese me m or y e ffects c a n b e ne glecte d. I n t h at c ase, it is p ossi ble t o f or m a n a p pr o xi m ate descri pti o n w here t he c o n diti o n al e v ol uti o n t o f ut ure st ates, gi ve n t he prese nt st ate of t he o p e n s yste m ˆρS(t), d o es n ot de p e n d o n a n y p ast st ates b ut o nl y o n t he prese nt st ate. We c all t his i n t he c o nte xt of st o c h astic pr o cesses t he M ar k o vi a n pr o p ert y.

Let us ass u me t h at t he me m or y i n t he e n vir o n me nt (i nf or m ati o n i n t he f or m of c or- rel ati o ns) c a use d b y t he c h a n ges i n t he o p e n s yste m t h at we w a nt t o f oll o w is l ost after ti me ∆ t. T his c a n h a p p e n t hr o u g h str o n g e ffects of dec o here nce. T he ti me ∆ t t he n sets t he sc ale of t his s o-c alle d ti me c o arse- gr ai ni n g, i.e. t he s h ortest p eri o d of ti me o ver w hic h t he b e h a vi or of t he o p e n s yste m c a n b e deter mi ne d [ 1 1, 1 2]. It f oll o ws t h at we m ust als o ass u me t h at t he o p e n s yste m c h a n ges a p preci a bl y o ver a t y pic al ti mesc ale τS m uc h l ar ger t h a n t his ti me ∆ t:

τS ∆ t.

F urt her m ore, w he n deri vi n g t his M ar k o vi a n m aster e q u ati o n f or ˆρS, we w o ul d li ke t o preser ve t he pr o p erties of t he ge ner al Kr a us re prese nt ati o n [ 1 3] of t he e v ol uti o n. T hese pr o p erties i ncl u de li ne arit y, her micit y preser vati o n, tr ace preser vati o n a n d c o m plete p osi- ti vit y. For e x a m ple, t his c a n b e d o ne t hr o u g h t he pr o cess of ti me c o arse- gr ai ni n g descri b e d a b o ve al o n g wit h t he ass u m pti o n of we a k i nter acti o n (t o sec o n d or der) b et wee n t he o p e n s yste m a n d t he e n vir o n me nt [ 1 1, 1 2]. T he res ulti n g e q u ati o n is t he n i n t he Li n d bl a d f or m w hic h is t he m ost ge ner al M ar k o vi a n m aster e q u ati o n wit h t hese pr o p erties [ 9].

If we restrict o ursel ves t o a ti me-i n de p e n de nt H a milt o ni a n ˆHS a n d t he i nter acti o n H a milt o ni a n i n t he f or m ˆHI = ˆA ⊗ ˆB , t he Li n d bl a d f or m c a n b e e x press e d wit h t he use of ei ge n o p er at ors of t he o p e n s yste m,

ˆAω =

ω = −

| | ˆA | | ,

w here t he s u m r u ns o ver all e ner g y ei ge n val ues a n d of ˆHS s uc h t h at t heir di ffere nce c or- res p o n ds t o t he tr a nsiti o n fre q ue nc y ω = ( − )/ . T he m aster e q u ati o n i n t he Li n d bl a d f or m e x presse d f or t he re d uce d de nsit y m atri x i n t he i nter acti o n pict ure ˆρSI re a ds:

d

dt ˆρSI(t) = − i[ ˆHU ( ∆t), ˆρSI(t)] +

ω, ω γω ω ( ∆t) ˆAω ˆρSI(t) ˆAω − 1

2 ˆAω ˆAω, ˆρSI(t) , ( 1. 1) w here it is re q uire d t h at ˆHU is her miti a n a n d t he r ates γω ω ( ∆t) f or m a p ositi ve m atri x [ 1 2].

T he first ter m i n ( 1. 1) acc o u nts f or t he u nit ar y p art of t he e v ol uti o n of t he o p e n s yste m w hile t he rest ser ves t o descri b e t he n o n- u nit ar y d y n a mics. N ote t h at t he n o n- u nit ar y p art is s u m me d o ver t w o sets of p ossi ble tr a nsiti o n fre q ue ncies ( ω a n d ω ) a n d t h at t here are ter ms de p e n di n g o n t he c o arse- gr ai ni n g p ar a meter ∆ t.

(9)

2. Q u a nt u m o p ti c al m a s t e r e q u a ti o n

Micr osc o pic a n d p he n o me n ol o gic al deri vati o ns of M ar k o vi a n m aster e q u ati o ns ofte n rel y o n f urt her ass u m pti o ns a n d t he res ulti n g m aster e q u ati o n m a y n ot c o me o ut i n t he Li n d- bl a d f or m. T his c a n le a d t o p at h ol o gic al b e h a vi o ur s uc h as vi ol ati o n of p ositi vit y [ 1 4]. For o ur m o del, we use a st a n d ar d q u a nt u m o ptic al m aster e q u ati o n ( Q O M E) w h ose deri va- ti o n c a n b e f o u n d i n m a n y te xt b o o ks, s uc h as T h e T h e or y of O pe n Q u a nt u m S yst e ms b y Bre uer a n d Petr ucci o ne [ 9]. I n o ur deri vati o n, t he Li n d bl a d f or m is e ns ure d wit h t he use of t he r ot ati n g w a ve a p pr o xi m ati o n ( R W A).

2. 1 Mi c r o s c o pi c a s s u m p ti o n s a n d d e ri v a ti o n

O ur q u a nt u m o ptic al m aster e q u ati o n ass u mes t he f oll o wi n g H a milt o ni a n:

ˆH = N

i ω i|i i| +

k λ = 1 ,2

ω kˆaλ(k ) ˆaλ(k ) − e ˆD · ˆE. ( 2. 1) T he o p e n s yste m h as a discrete e ner g y s p ectr u m wit h N well-s p ace d e ner g y le vels,

ˆHS = N

i ω i|i i| , ( 2. 2)

w here e ner g y ei ge nst ates |i h a ve ei ge n val ues E i pr o p orti o n al t o t he a n g ul ar fre- q ue ncies ω i (E i= ωi).

T he he at b at h is re prese nte d b y a q u a ntize d electr o m a g netic fiel d t h at is i n a t her m o d y n a mic e q uili bri u m at te m p er at ure T , i.e. it is a n i de al bl ac k b o d y r a di a- ti o n,

ˆHB =

k λ = 1 ,2

ω kˆaλ(k ) ˆaλ(k ). ( 2. 3)

T he o p er at ors ˆaλ(k ) a n d ˆaλ(k ) are t he cre ati o n a n d a n ni hil ati o n o p er at ors f or a p h ot o n i n t he p ol ariz ati o n st ate λ , wit h t he w a ve vect or k a n d t he ass o ci ate d a n g ul ar fre q ue nc y ω k = c|k |. T he ass u me d t her m o d y n a mic e q uili bri u m i m p oses t he B ose- Ei nstei n distri b uti o n o n t he a ver a ge p h ot o n o cc u p a nc y n u m b er:

ˆaλ(k ) ˆaλ (k ) = δk k δλ λ N (ωk), N(ω ) = 1

e x p(kBωT ) − 1, ( 2. 4) w here N (ω ) is t he a ver a ge p h ot o n o cc u p a nc y n u m b er at a n g ul ar fre q ue nc y ω a n d te m p er at ure T (kB is t he B oltz m a n n c o nst a nt).

T he i nter acti o n b et wee n t he b at h a n d t he o p e n s yste m is si m pli fie d wit h t he di p ole a p pr o xi m ati o n [ 1 5],

ˆHI = − e ˆD · ˆE, ( 2. 5)

w here ˆD is t he tr a nsiti o n di p ole o p er at or w h ose c o m ple x vect or ele me nts i n t he e ner g y ei ge n b asis we de n ote as d ,

d = | ˆD | = e | ˆr | . ( 2. 6)

(10)

T he o p er at or ˆE is t he q u a ntize d electric fiel d o p er at or i n t he Sc hr ö di n ger pict ure, ˆE = i

k λ = 1 ,2

2 π ω k

V ˆaλ(k ) − ˆaλ(k ) eλ, ( 2. 7) w here V is t he fi nite v ol u me of t he res o n at or (c a vit y) c o nt ai ni n g t he Bl ac k b o d y r a di ati o n.

T he deri vati o n of t he m aster e q u ati o n fr o m t he v o n Ne u m a n n e q u ati o n le a ds u n der t he ass u m pti o ns of we a k c o u pli n g a n d t he ass u m pti o ns of t he c o arse- gr ai ni n g pr o ce d ure brie fl y descri b e d i n t he pre vi o us c h a pter (sec. 1. 2) t o t he f oll o wi n g ( Re d fiel d) e q u ati o n (see e q.

3. 1 8 8 i n [ 9]):

d

dt ˆρSI(t) =

ω, ω j e x p [ i(ω − ω )t] γ (ω ) ˆAj(ω ) ˆρSI(t) ˆAj(ω ) − ˆAj(ω ) ˆAj(ω ) ˆρSI(t) + h.c.

( 2. 8) We c a n see t h at t his e q u ati o n is n ot yet i n t he Li n d bl a d f or m ( 1. 1) d ue t o t he f act ors e x p [ i(ω − ω )t]. T his pr o ble m c a n b e s ol ve d wit h t he r ot ati n g w a ve a p pr o xi m ati o n w here we ass u me t h at t he e ffects of t he f ast r ot ati n g ter ms ( ω = ω ) e ffecti vel y a ver a ge o ut. To b e c o nsiste nt wit h t he pr o cess of c o arse- gr ai ni n g, we nee d t o m a ke s ure t h at t he ti mesc ales τR W A = ( ω − ω )− 1 c orres p o n di n g t o t he all o we d tr a nsiti o n fre q ue ncies s atisf y:

τS ∆ t m a x( τR W A ). ( 2. 9)

Ne glecti o n of t hese ter ms t h us re q uires t h at all of t he e ner g y le vels are well s p ace d. We c a n n o w t hi n k of t he p ar a meter ∆ t als o as t he stre n gt h of a filter w hic h deter mi nes t he ti mesc ales o ver w hic h t he b e h a vi o ur of t he o p e n s yste m c a n b e a ffecte d.

Wit h t he r ot ati n g w a ve a p pr o xi m ati o n, t he Q O M E ( 2. 8) c a n b e c ast i nt o t he Li n d bl a d f or m:

T h e q u a nt u m o p ti c al m a s t e r e q u a ti o n d

dt ˆρSI(t) =

ω j γ (ω ) ˆAj(ω ) ˆρSI(t) ˆAj(ω ) − ˆAj(ω ) ˆAj(ω ) ˆρSI(t) + h.c. ( 2. 1 0) ˆA (ω ) =

ω = − | | ˆD | | ( 2. 1 1)

γ (ω ) = ω 3

6 π 0 c3( 1 + N (ω ) + i S(ω )) ( 2. 1 2)

S (ω ) = 1 ω 3π P

0 d ωkω k3 1 + N (ωk)

ω − ωk + N (ω k)

ω − ω k ( 2. 1 3)

T he Q O M E is e x presse d f or t he de nsit y m atri x ˆρSI i n t he i nter acti o n pict ure a n d t he first s u m r u ns o ver all ( p ositi ve a n d ne g ati ve) a n g ul ar fre q ue ncies ω ij c orres p o n di n g t o t he e ner g y di ffere nces of t he all o we d tr a nsiti o ns E j− E i= ω ij. T he o p er at ors ˆAj(ω ) dec o m- p ose t he tr a nsiti o n di p ole m o me nt o p er at or ˆDj w here j desi g n ates t he s p ati al c o m p o ne nts.

(11)

Fi n all y, t he i nte gr al S (ω ) i n t he r ate c o e fficie nts γ (ω ) acc o u nts f or t he L a m b a n d St ar k s hifts a n d c o ntri b utes t o t he u nit ar y e v ol uti o n [ 9]. T he di ver ge nce of t hes e ter ms S (ω ) nee ds t o b e a me n de d b y re n or m aliz ati o n. H o we ver, t he sizes of t hese ter ms are ge ner all y at or b el o w t he or der of t he ne glecte d ter ms i n t he we a k c o u pli n g a p pr o xi m ati o n a n d t heref ore we h a ve t o ne glect t he m.

2. 2 A p pli c a ti o n t o V- t y p e s y s t e m i n si n gl e b a t h

Let us c alc ul ate t he e q u ati o ns of m oti o n f or a t hree-le vel de ge ner ate o p e n s yste m c o u ple d t o a si n gle he at b at h de picte d i n t he fi g ure 2. 1. D ue t o t he li ne arit y of t he Q O M E, t his c alc ul ati o n will act u all y ser ve as a b uil di n g bl o c k f or f or mi n g t he e q u ati o ns of m oti o n f or t he Q H E (see fi g. 3. 1).

Fi g ure 2. 1: T he o p e n s yste m c o nsists of t hree st ates l a b ele d { 0 , 1 , 2 } w hic h are re prese nte d b y t he bl ac k s oli d h oriz o nt al li nes wit h t he u p p er st ates h a vi n g hi g her e ner g y. T he gree n d as he d li nes re prese nt t he all o we d tr a nsiti o ns b et wee n t hese st ates. T hese tr a nsiti o ns are c o u ple d t o a si n gle p h ot o n b at h at te m p er at ure T w hic h is ill ustr ate d wit h gree n arr o ws p oi nti n g t o t hese tr a nsiti o ns.

At fist, we rec all t he Q O M E prese nte d i n t he precee di n g secti o n, d

dt ˆρSI(t) =

ω j γ (ω ) ˆAj(ω ) ˆρSI(t) ˆAj(ω ) − ˆAj(ω ) ˆAj(ω ) ˆρSI(t) + h.c., ( 2. 1 4) a n d t a ke a l o o k at t he o p er at or ˆA (ω ).

ˆAj(ω ) =

ω = − | | ˆD j| | =

ω = − | d j | . ( 2. 1 5)

T he ri g ht- h a n d si de of e q. ( 2. 1 4) is a s u m of ter ms w here e ac h ter m c o ntri b utes t o o ne s p ati al c o m p o ne nt. For bre vit y, we will o mit t he i n de x j , w or k i n o ne di me nsi o n a n d a d d t he t w o re m ai ni n g s p ati al c o m p o ne nts at t he e n d. I n t he c ase of t he ele me nt d j, we will

(12)

als o o mit t he b ol d f o nt i n dic ati n g a vect or a n d write d : ˆA (ω ) =

ω = − | | ˆD | | =

ω = − | d | . ( 2. 1 6)

F urt her m ore, we n otice t h at ˆA (− ω ) = ˆA(ω ). T his f or m ul a all o ws us t o re alize t h at w he n we p erf or m t he s u m o ver t he tr a nsiti o n fre q ue ncies { ω, − ω } , w here ω = E 1 2− E 0, we e nc o u nter o nl y t w o di ffere nt o p er at ors ˆA a n d its her miti a n c o nj u g ate ˆA:

ˆA = ˆA (ω ) = ˆA(− ω ) = |0 0 | ˆD |1 1 | + |0 0 | ˆD |2 2 | = d0 1 |0 1 | + d0 2 |0 2 | , ˆA = ˆA (− ω ) = ˆA(ω ) = |1 1 | ˆD |0 0 | + |2 2 | ˆD |0 0 | = d0 1 |1 0 | + d0 2 |2 0 | . I n t his n ot ati o n, t he Q O M E i n o ne s p ati al di me nsi o n re a ds:

d

dt ˆρSI = γ (ω )( 2 ˆA ˆρSI ˆA− ˆA ˆA ˆρSI− ˆρSI ˆA ˆA )

+ γ (− ω )( 2 ˆAˆρSI ˆA − ˆA ˆAˆρSI− ˆρSI ˆA ˆA). ( 2. 1 7) As t he ne xt ste p, we c alc ul ate t he f oll o wi n g ter ms c o nt ai ne d i n ( 2. 1 7) w hile de n oti n g t he ele me nts i| ˆρSI |j as rij:

ˆA ˆA =( |d0 1|2 + |d0 2|2) |0 0 | ,

ˆA ˆA = |d0 1|2 |1 1 | + |d0 2|2 |2 2 | + d0 1d0 2 |1 2 | + d0 1d0 2 |2 1 | , ˆA ˆρSI ˆA = |d0 1|2 r1 1 + |d0 2|2 r2 2 + d0 1d0 2r1 2 + d0 1d0 2r2 1 |0 0 | ,

ˆAˆρSI ˆA = r0 0 |d0 1|2 |1 1 | + |d0 2|2 |2 2 | + d0 1d0 2 |1 2 | + d0 1d0 2 |2 1 | .

( 2. 1 8)

B y c aref ul o bser vati o n of t hese ter ms, we n otice t h at t he ele me nts { r0 1, r0 2} a n d c o nse- q ue ntl y t heir c o m ple x c o nj u g ates { r1 0, r2 0} e v ol ve i n de p e n de ntl y of t he ot her ele me nts i ncl u di n g t he p o p ul ati o ns ( di a g o n al ele me nts),

d

dtr0 1 = f1(r0 1, r0 2), d

dtr0 2 = f2(r0 1, r0 2). ( 2. 1 9) T his me a ns t h at we c a n i g n ore t heir e v ol uti o n a n d set t he m t o zer o. F urt her m ore, it m a kes o ur w or k of tr a nsf or mi n g b ac k i nt o t he Sc hr ö di n ger pict ure e as y b ec a use t he ele me nts { r0 0,r1 1,r2 2,r1 2,r2 1} w hic h we are i ntereste d i n are i de ntic al i n b ot h pict ures. To see t his, let us de n ote t he ele me nts i n t he Sc hr ö di n ger pict ure as ρij, i.e. ρij= i| ˆρS |j , a n d de n ote t he a n g ul ar fre q ue nc y pr o p orti o n al t o t he e ner g y E i i n t he f or m ul a E = ω as ωi. T he f or m ul as f or tr a nsf or mi n g b et wee n t he Sc hr ö di n ger a n d t he i nter acti o n pic ut ure are t he n:

ρij = i| e− i ˆHSt / ˆρIS ei ˆHSt / |j = ei(ωj− ωi)trij, d

dtρij = i(ωj − ω iij+ ei(ωj− ωi)t d dtrij.

Si nce t he u p p er e ner g y le vels are de ge ner ate, E 1 = E 2 = E 1 2, t he ele me nts we are i ntereste d i n, i.e. { r0 0,r1 1,r2 2,r1 2,r2 1} , are i n dee d i n vari a nt u n der t his tr a nsf or m ati o n.

We n o w pr o cee d t o i ncl u de t he ot her t w o s p ati al di me nsi o ns c o nt ai ne d i n t he Q O M E, e q. ( 2. 1 4), i.e. s u m o ver t he o m mite d i n de x j . I n or der t o gr o u p t his l ar ge n u m b er of ter ms, we will use t he st a n d ar d a bs ol ute val ue o p er ati o n:

|a |2 =

j ajaj,

(13)

a n d t he or di n ar y d ot pr o d uct s uc h t h at f or t w o c o m ple x vect ors a a n d b t he d ot pr o d uct is s y m metric b ut ge ner all y c o m ple x:

a · b = b · a =

j ajb j.

S u m m ati o n o ver t he s p ati al c o m p o ne nts (x, y, z ) usi n g t he e q u ati o ns ( 2. 1 4), ( 2. 1 7) a n d ( 2. 1 8) yiel ds:

d

dt ˆρSI = 2 γ (ω ) |0 0 | |d 0 1|2 ρ1 1+ |d0 2|2 ρ2 2+ d 0 1·d 0 2ρ1 2+ d 0 1·d 0 2ρ2 1

+ 2 γ (− ω )ρ0 0 |d 0 1|2 |1 1 |+ |d 0 2|2 |2 2 |+ d 0 1·d 0 2 |1 2 |+ d 0 1·d 0 2 |2 1 |

− γ (ω ) |d0 1|2 |1 1 |+ |d 0 2|2 |2 2 |+ d 0 1·d 0 2 |1 2 |+ d 0 1·d 0 2 |2 1 | ˆρSI

− γ (ω ) ˆρSI |d 0 1|2 |1 1 |+ |d 0 2|2 |2 2 |+ d 0 1·d 0 2 |1 2 |+ d 0 1·d 0 2 |2 1 |

− γ (− ω ) |d 0 1|2+ |d 0 2|2 |0 0 | ˆρSI− γ (− ω ) ˆρSI |0 0 | |d 0 1|2+ |d 0 2|2 .

Si nce t he u ni nteresti n g d y n a mics of t he ele me nts { ρ0 1, ρ0 2, ρ1 0, ρ2 0} c a n b e o mitte d, we re arr a n ge t he Q O M E i nt o a si m ple m aster e q u ati o n,

d

dtρ = ˆM ρ,

w here ˆM is a 5 × 5 tr a nsiti o n m atri x acti n g o n a vect or ρ w hic h c o nt ai ns t he fi ve rel- e va nt ele me nts { ρ0 0, ρ1 1, ρ2 2, ρ1 2, ρ2 1} . F urt her m ore, we si m plif y t he tr a nsiti o n m atri x ele me nts b y m a ki n g use of t he pr o p ert y of t he o cc u p ati o n n u m b er ( de fi ne d i n e q. ( 2. 4)):

N (− ω ) = − 1 − N (ω ), a n d b y i ntr o d uci n g t he f oll o wi n g c o nst a nts:

α = ( 3 π 0 c3)− 1, γ1 2 = α ω 3d 0 1 · d 0 2,

γ1 = α ω 3 |d 0 1|2 , n = N (ω ),

γ2 = α ω 3 |d 0 2|2 . ( 2. 2 0)

Wit h t hese c o nst a nts, t he m aster e q u ati o n re a ds:







˙ρ0 0

˙ρ1 1

˙ρ2 2

˙ρ1 2

˙ρ2 1







=







− (γ1+ γ2)n γ1( 1 + n ) γ2( 1 + n ) γ1 2( 1 + n ) γ1 2( 1 + n ) γ1n − γ1( 1 + n ) 0 − γ1 22 ( 1 + n ) − γ21 2 ( 1 + n ) γ2n 0 − γ2( 1 + n ) − γ1 22 ( 1 + n ) − γ21 2 ( 1 + n ) γ1 2 n − γ21 2 ( 1 + n ) − γ21 2( 1 + n ) − γ1+ γ2 2( 1 + n ) 0 γ1 2n − γ21 2( 1 + n ) − γ21 2( 1 + n ) 0 − γ1+ γ2 2( 1 + n )













ρ0 0

ρ1 1

ρ2 2

ρ1 2

ρ2 1







.

( 2. 2 1) We c a n i ntr o d uce a n e ve n m ore c o ncise n ot ati o n:

( 1 + n )γ1 = T1, n γ 1 = t1,

( 1 + n )γ2 = T2, n γ 2 = t2,

( 1 + n )γ1 2 = 2 T1 2, n γ1 2 = 2 t1 2. ( 2. 2 2)

(14)

In this notation, the QOME takes the form:

ρ˙00

˙ ρ11

˙ ρ22 ρ˙12

˙ ρ21

=

−t1−t2 T1 T2 2T12 2T12

t1 −T1 0 −T12 −T12

t2 0 −T2 −T12 −T12

2t12 −T12 −T12 −(T1+T2)/2 0 2t12 −T12 −T12 0 −(T1+T2)/2

ρ00 ρ11 ρ22 ρ12 ρ21

.

Lastly, let us note that the probability in the populations of the open system is conserved.

We can verify this by summation of the first three rows of the transition matrix, d

dt00+ρ11+ρ22) = 0.

(15)

3. Quantum heat engine

We proceed by presenting the QHE model. First, we briefly describe its state cycle and outline the formation of the equations of motion from the simpler V-type system. Next, we examine the master equation and the underlying fundamental processes. This is then followed by the study of the probability currents, the energy currents and the power output of the QHE. In the last section of this chapter, we take a look at the entropy production and the efficiency.

3.1 Introduction

A quantum heat engine is a microscopic power-generating device coupled to two or more reservoirs at different temperatures. In our case, the working medium of the QHE is modeled by a five-level open system (see figure 3.1) which operates between two baths: a hot (red) and a cold (blue) bath.

Figure 3.1: A diagram of the QHE. The symbols γ1h,γ2h, γ1c, γ2c, Γc represent the rates of transitions coupled to the heat baths while the rate Γ represents the one-way power output of the QHE (as explained in sec. 3.9).

Our model corresponds to an exactly degenerate version of a quantum heat engine proposed by Dorfman et al. [8]. Their quantum heat engine is inspired by photosynthesis in plants and bacteria and models the light-dependent cycle of two tightly coupled chloro- phylls at the heart of the photosynthetic reaction center. Dorfman et al. show that this model can represent artificial quantum heat engines such as a laser or a photocell [8, 14].

The open system is represented by two donor molecules and one acceptor molecule and the cycle of states of this open system (see fig. 3.1) goes as follows:

(16)

T he c ycle b e gi ns wit h t w o d o n or m olec ules s urr o u n di n g a n acce pt or m olec ule i n t he gr o u n d st ate |b .

A n a bs or pti o n of a s ol ar p h ot o n res ults i n t he e xcite d st ates of t he d o n ors: |1 a n d

|2 , w here t he cre ate d h ole a n d electr o n p air are still i n t he d o n ors.

T he e xcite d electr o n is t he n tr a nsferre d fr o m t he d o n ors t o t he acce pt or m olec ule wit h t he e missi o n of a p h o n o n, res ulti n g i n t he c h ar ge-se p ar ate d st ate |α . T he electr o n is i n t he acce pt or m olec ule n o w a n d t he h ole re m ai ns i n t he d o n ors.

Ne xt, t he tr a nsiti o n t o |β c orres p o n ds t o t he electr o n c o mi n g o ut of t he acce pt or m olec ule t o s o me l o wer e ner g y st ate a n d p erf or mi n g usef ul w or k. We m o del t his pr o cess b y t he p he n o me n ol o gic al r ate Γ a n d t he a m o u nt of a vail a ble w or k i n t his tr a nsiti o n de p e n ds o n t he r ati o of t he ste a d y-st ate p o p ul ati o ns ρα α a n d ρβ β. Fi n all y, t he p ositi ve c h ar ge is ne utr alize d b y a n electr o n s o urce wit h t he e missi o n of a p h o n o n. T he o p e n s yste m ret ur ns t o t he gr o u n d st ate |b .

It t ur ns o ut t h at t heir pr o p ose d m o del s u ffers fr o m a vi ol ati o n of p ositi vit y a n d di ver- ge nt b e h a vi or [ 1 4]. We a d o pt t he s a me sc he me of t he Q H E wit h t he di ffere nce t h at t he u p p er e ner g y le vels are p erfectl y de ge ner ate a n d we use a Q O M E i n t he Li n d bl a d f or m.

T his m o del t he n e ns ures t he pr o p erties of t he de nsit y m atri x.

3. 2 E q u a ti o n s of m o ti o n

Let us pr o cee d b y c alc ul ati n g t he e q u ati o ns of m oti o n f or t he Q H E. First, we t a ke a l o o k at t he all o we d tr a nsiti o ns i n fi g. 3. 1 w hic h deter mi ne t he f or m of t he tr a nsiti o n di p ole m o me nt o p er at or ˆD :

ˆD =





0 d b 1 d b 2 0 d b β

d b 1 0 0 d α 1 0 d b 2 0 0 d α 2 0 0 d α 1 d α 2 0 0

d b β 0 0 0 0





. ( 3. 1)

N ote t h at we or der t he st ate b asis i n t he m atri x re prese nt ati o n cl o c k wise i n t he Q H E c ycle st arti n g wit h t he gr o u n d st ate b, i.e. { b, 1 , 2 , α, β} . T he tr a nsiti o n b et wee n t he st ates { α, β } is ne glecte d f or n o w a n d will b e a d de d at t he ver y e n d.

T he all o we d tr a nsiti o ns deter mi ne t he set of t he tr a nsiti o n fre q ue ncies w hic h we s u m o ver i n t he Q O M E. T hese i ncl u de t he a n g ul ar fre q ue ncies { ω b 1 2, ωα 1 2, ωb β} w here ωA B

de n otes t he fre q ue nc y c orres p o n di n g t o t he e ner g y di ffere nce E B − E A = ωA B . We c a n t hi n k of t he s u m o ver di ffere nt tr a nsiti o n fre q ue ncies as a s u m o ver di ffere nt s u bs yste ms.

I n o ur c ase, we h a ve t w o V-t y p e s yste ms: ˆK (ω b 1 2, Th) a n d ˆK (ωα 1 2, Tc) o p er ati n g b et wee n t he st ates { b, 1 , 2 } a n d { α, 1 , 2 } res p ecti vel y, a n d a t w o-le vel s yste m ˆK (ω b β, Tc) o p er ati n g b et wee n { b, β } . T hese s yste ms are c o u ple d t o t heir res p ecti ve b at hs, i.e. t he h ot (Th) or t he c ol d (Tc) b at h, a n d a d d u p t o f or m t he Q H E m o del:

d

dt ˆρS = ˆK (ω b 1 2, Th) + ˆK (ωα 1 2, Tc) + ˆK (ω b β, Tc), ˆK (ω, T ) =γ (ω, T )( 2 ˆA ˆρSI ˆA − ˆA ˆA ˆρSI − ˆρSI ˆA ˆA )

+ γ (− ω, T )( 2 ˆAˆρSI ˆA − ˆA ˆAˆρSI − ˆρSI ˆA ˆA).

(17)

N ote t h at t he e x pressi o n f or ˆK (ω, T ) is writte n i n o ne di me nsi o n, as i n e q. ( 2. 1 7). I n or der t o arri ve at t he e q u ati o ns f or t he t w o-le vel s yste m, it is c o n ve nie nt t o c o nsi der t he e q u ati o ns f or a t hree-le vel V-t y p e s yste m a n d set o ne of t he tr a nsiti o n di p ole m o me nts t o zer o.

Besi des t he p o p ul ati o ns, t he rele va nt re d uce d de nsit y m atri x ele me nts of t he s u bs ys- te ms o nl y i ncl u de t he c o here nces ρ1 2 a n d ρ2 1 ( w hic h arise i n t he c alc ul ati o n f or t he V-t y p e s yste m):

ˆρS =





ρb b ρb 1 ρb 2 ρb α ρb β

ρ1 b ρ1 1 ρ1 2 ρ1 α ρ1 β

ρ2 b ρ2 1 ρ2 2 ρ2 α ρ2 β

ρα b ρα 1 ρα 2 ρα α ρα β

ρβ b ρβ 1 ρβ 2 ρβ α ρβ β





. ( 3. 2)

We will arr a n ge t he rele va nt ele me nts ( bl ac k) i nt o a m aster e q u ati o n a n d or der t he ele- me nts i n t he st ate vect or ρ s uc h t h at t he c o here nces are at t he e n d:

d

dtρ = ˆM ρ, ρ = ( ρb b, ρ1 1, ρ2 2, ρα α, ρβ β , ρ1 2, ρ2 1)T . ( 3. 3) For a c o ncise descri pti o n, let us i ntr o d uce c o nst a nts a n al o g o us t o t he o nes f or t he V-t y p e s yste m ( 2. 2 0):

γ1 h = α ω b 1 23 |d b 1|2 , γ1 2 h = α ω b 1 23 d b 1 · d b 2, nh = N (ωb 1 2, Th), γ2 h = α ω b 1 23 |d b 2|2 , γ1 2 c = α ω α 1 23 d α 1 · d α 2, nc = N (ωα 1 2, Tc), γ1 c = α ω α 1 23 |d α 1|2 , Γ c = α ω b β3 |d b β|2 , Nc = N (ωb β, Tc),

γ2 c = α ω α 1 23 |d α 2|2 , α = ( 3 π 0 c3)− 1. ( 3. 4)

We f urt her gr o u p t hese c o nst a nts t o get her:

( 1 + nh1 h = H 1, ( 1 + nc1 c = C 1, ncγ1 c = c1, nhγ1 h = h1, ( 1 + nh2 h = H 2, ( 1 + nc2 c = C 2, ncγ2 c = c2, nhγ2 h = h2, ( 1 + nh1 2 h = 2 H 1 2, ( 1 + nc1 2 c = 2 C 1 2, ncγ1 2 c = 2 c1 2, nhγ1 2 h = 2 h1 2,

( 1 + N c) Γc = C 0, NcΓ c = c0. ( 3. 5) I n a d diti o n t o t he tr a nsiti o ns g o ver ne d b y t he Q O M E, we descri b e t he o ne- w a y tr a nsiti o n b et wee n t he st ates { α, β } b y a n o n- ne g ati ve tr a nsiti o n r ate Γ . D uri n g t his tr a nsiti o n, p art of t he e ner g y tr a nsfer c orres p o n ds t o usef ul w or k a n d t heref ore t he r ate Γ c o ntr ols t he p o wer o ut p ut of t he Q H E, see fi g. 3. 1 a n d sec. 3. 9. To test t he st a bilit y of t he res ult, we als o i ncl u de a p he n o me n ol o gic al dec o here nce r ate m o deli n g t he dec a y of t he c o here nce ele me nts ρ1 2 a n d ρ2 1. T hese t w o p he n o me n ol o gic al e ffects c orres p o n d t o t he f oll o wi n g d y n a mics:

˙ρα α

˙ρβ β = − Γ 00 + Γ ρα α

ρβ β , ˙ρ1 2

˙ρ2 1 = − Λ / 2 0

0 − Λ / 2 ρ1 2

ρ2 1 . ( 3. 6)

(18)

T he tr a nsiti o n m atri x of t he t he res ulti n g m aster e q u ati o n re a ds:

ˆM =









− c0− h1− h2 H 1 H 2 0 C 0 2 H 1 2 2 H 1 2

h1 − C 1− H 1 0 c1 0 − C1 2− H 1 2 − C1 2− H 1 2

h2 0 − C 2− H 2 c2 0 − C1 2− H 1 2 − C1 2 − H 1 2

0 C 1 C 2 − c1− c2− Γ 0 2 C 1 2 2 C1 2

c0 0 0 Γ − C 0 0 0

2 h1 2 − C1 2 − H 1 2 − C1 2 − H 1 2 2 c1 2 0 + H− (C1+ H1+ C2+ Λ) / 22+ 0

2 h1 2 − C1 2− H 1 2 − C1 2− H 1 2 2 c1 2 0 0 + H− (C1+ H1+ C2+ Λ) / 22+









.

( 3. 7) L astl y , we see t h at t he pr o b alit y i n t he p o p ul ati o ns iρii is c o nser ve d:

i

d

dtρii(t) = 0. ( 3. 8)

3. 3 S ol u ti o n s t o t h e m a s t e r e q u a ti o n

T he o bt ai ne d m aster e q u ati o n is a s yste m of first- or der li ne ar h o m o ge ne o us di ffere nti al e q u ati o ns:

d

dtρ = ˆM ρ. ( 3. 9)

T he e v ol uti o n of a s p eci fic i niti al st ate ρ (t0) fr o m ti me t0 t o t is g o ver ne d b y t he pr o p a g at or ˆUM (t, t0):

ρ (t) = ˆUM (t, t0)ρ (t0) = e x p M (t − t0) ρ (t0). ( 3. 1 0) We c a n o bt ai n t he ste a d y-st ate s ol uti o ns ρst fr o m t he n ull s p ace of t he tr a nsiti o n m atri x ker( ˆM ):

d

dtρst = ˆM ρst = 0 . ( 3. 1 1)

T he ste a d y-st ate vect ors ρst d o n ot e v ol ve i n ti me a n d t heref ore de p e n d o nl y o n t he p ar a meters deter mi ni n g t he m atri x ˆM . T hese c a n b e e x presse d usi n g t he r ates Γ a n d Λ , t he te m p er at ures Th a n d Tc, t he e ner gies E b, Eα, E1 2 a n d E β, a n d t he tr a nsiti o n di p ole m o me nts d b 1, d b 2, dα 1, d α 2 a n d d b β. We s h all c all t he sets of p ar a meters deter mi ni n g t he ste a d y-st ate vect or

ρst = ρst( Γ, Th, Tc, Eb, E1 2, Eα, Eβ, d b 1, d b 2, d α 1, d α 2, d b β, Λ) ,

t he m o d el p ar a m et ers . Us u all y, o ne e x p ects t he n ulls p ace of ˆM t o b e o ne- di me nsi o n al.

H o we ver, as we s h all see l ater, c o nstr ai nts o n t he c o e fficiets of t he tr a nsiti o n m atri x ˆM c a n res ult i n a m ore t h a n o ne- di me nsi o n al n ull s p ace. T he si g ni fic a nce of t hese a d diti o n al ste a d y-st ate s ol uti o ns will b e disc usse d se p ar atel y (see secs. 4. 1, 4. 3, 4. 6).

(19)

3. 4 F u n d a m e nt al p r o c e s s e s

To i nter pret t he e q u ati o ns of m oti o n, we rec all t he Ei nstei n c o e fficie nts [ 1 6] A a n d B c orres p o n di n g t o t he pr o cesses of s p o nt a ne o us e missi o n a n d sti m ul ate d e missi o n a n d a b- s or bti o n. T he f oll o wi n g e q u ati o ns descri b e t hese pr o cesses i n a s yste m wit h N 0 + N 1 at o ms i nter acti n g wit h electr o m a g netic r a di ati o n i n t her m o d y n a mic e q uili bri u m w here N 0 is t he n u m b er of at o ms i n t he gr o u n d st ate a n d N 1 is t he n u m b er of at o ms i n t he e xcite d st ate:

d N0

dt a b s = − u (ω, T )B N 1 = − d N1

dt a b s , ( 3. 1 2)

d N1

dt sti m = − u (ω, T )B N 1 = − d N0

dt sti m, ( 3. 1 3)

d N1

dt s p o nt = − A N 1 = − d N0

dt s p o nt . ( 3. 1 4)

T he f u ncti o n u (ω, T ) is t he s p ectr al e ner g y de nsit y at a n g ul ar fre q ue nc y ω a n d te m p er a- t ure T gi ve n b y Pl a nc k’s l a w of bl ac k b o d y r a di ati o n,

u (ω, T ) = 2 ω 3 π c3

1

e x p kbωT − 1 = A

B N (ω ). ( 3. 1 5)

It is a n i nteresti n g f act t h at t he s p o nt a ne o us e missi o n is te m p er at ure i n de p e n de nt a n d c a uses a n e x p o ne nti al dec a y of t he e xcite d st ate, w here as t he sti m ul ate d pr o cesses de p e n d o n t he s p ectr al e ner g y de nsit y. F urt her m ore, t he s p o nt a ne o us e missi o n c a n b e re g ar de d as t he sti m ul ate d e missi o n pr o cess c a use d b y a virt u al p h ot o n c o mi n g fr o m vac u u m fl uct u ati o ns. T he p h ase, t he p ol ariz ati o n a n d t he directi o n of pr o p a g ati o n of t he e mitte d p h ot o n are t he n r a n d o m, u nli ke i n t he pr o cess of sti m ul ate d e missi o n w here t he e mitte d p h ot o n is cre ate d i n t he s a me st ate as t he re al sti m ul ati n g p h ot o n [ 1 6].

S u m m ati o n of t he pr o cesses ( 3. 1 2 − 3. 1 4) a n d a re arr a n g me nt yiel ds:

d N1

dt = − d N0

dt = d N1

dt a b s + d N1

dt sti m + d N1

dt s p o nt

= A [B

A u (ν )N 0 − ( 1 + B

A u (ν ))N 1]

= A [N (ω )N 0 − ( 1 + N (ω ))N 1], w hic h c a n b e p ut i nt o a m atri x f or m:

d dt N 0

N 1 = A − N (ω ) ( 1 + N (ω ))N (ω ) − ( 1 + N (ω )) N 0

N 1 . ( 3. 1 6)

T his 2 × 2 m atri x all o ws us t o see t he f o ot pri nts of t he pr o cesses ( 3. 1 2 − 3. 1 4) i n t he tr a nsiti o n m atri x:

(20)

Mˆ =

ρbb ρ11 ρ22 ραα ρββ ρ12 ρ21

˙

ρbb −c0−h1−h2 H1 H2 0 C0 2H12 2H12

˙

ρ11 h1 −C1−H1 0 c1 0 −C12−H12 −C12−H12

˙

ρ22 h2 0 −C2−H2 c2 0 −C12−H12 −C12−H12

˙

ραα 0 C1 C2 −c1−c2−Γ 0 2C12 2C12

˙

ρββ c0 0 0 Γ −C0 0 0

ρ˙12 2h12 −C12−H12 −C12 −H12 2c12 0 +H−(C1+C2+

1+H2+Λ)/2 0

˙

ρ21 2h12 −C12−H12 −C12−H12 2c12 0 0 +H−(C1+C2+

1+H2+Λ)/2

.

(3.17) Specifically, we can compare the form of the equation (3.16) with the coefficients in the upper left 5×5 part of the transition matrix in eq. (3.17).1 From the definition of the coefficients, see eqs. (3.4) and (3.5), we check that the processes are indeed contained in the transition matrix. For example, the coefficients in red correspond to the transition between the states {b,1} where the rate H1 is the rate of the emission process (both stimulated and spontaneous emission) and the rate h1 is the rate of absorption.

The presence of these processes can be further supported by checking the standard result that in the dipole approximation the rate of spontaneous emission is proportional to the square of the transition dipole moment, see eqs. (3.4) and (3.5).

Notice that the rates of emission{C1,C2,H1,H2} from the upper states contribute to the decay of the coherences.

3.5 Alignment of transition dipole moments

Besides the dynamics in the upper left 5×5 part of the transition matrix in eq. (3.17), we have terms describing the coherent part of the fundamental processes arising from the degeneracy of the upper energy levels. The rate constants {c12, C12} and {h12, H12} are proportional to the dot products of the transition dipole moments dα1·dα2 and db1·db2 respectively, see eqs. (3.4) and (3.5). The values of these dot products clearly affect the behaviour of the coherences and if we set them to zero, the open system is always in a non-coherent state (ρ12=ρ21= 0). We can also push the open system towards a non- coherent state by increasing the decoherence rate Λ. Therefore, we call either of these cases where c12=C12=h12=H12= 0 or Λ→ ∞the no coherence case.

3.6 Probability currents

The conservation of probability tells us that the changes in the populations are caused by the flow of probability, i.e. probability currents. Let us denote a probability current

1The added top row and left column in eq. (3.17) serve for better orientation in the transition matrix.

(21)

fr o m t he p o p ul ati o n ρii t o ρk k as ji k. T he c o nser vati o n of pr o b a bilit y t he n re a ds:

d

dtρii(t) = −

k = i

ji k(t) =

k = i

jki(t), ( 3. 1 8)

w here we h a ve use d t he pr o p ert y ji k(t) = − jki(t) of c urre nts. We are de fi ni n g pr o b a bilit y c urre nts b et wee n p o p ul ati o ns o nl y a n d t h us we c a n restrict o ursel ves t o t he first fi ve r o ws of t he tr a nsiti o n m atri x:2





ρb b ρ1 1 ρ2 2 ρα α ρβ β ρ1 2 ρ2 1

˙ρb b − c0− h1− h2 H 1 H 2 0 C 0 2 H 1 2 2 H 1 2

˙ρ1 1 h1 − C 1− H 1 0 c1 0 − C 1 2− H 1 2 − C 1 2− H 1 2

˙ρ2 2 h2 0 − C 2− H 2 c2 0 − C 1 2− H 1 2 − C 1 2− H 1 2

˙ρα α 0 C 1 C 2 − c1− c2− Γ 0 2 C 1 2 2 C 1 2

˙ρβ β c0 0 0 Γ − C 0 0 0





.

I n t he n o c o here nce c ase, we c a n i de ntif y t he pr o b a bilit y c urre nts, i.e. tr ace t he c h a n ges i n t he p o p ul ati o ns, b y f oll o wi n g t he f u n d a me nt al pr o cesses. T he pr o b a bilit y c urre nt ji k

t he n h as t he f or m:

ji k(|d i k|2) = γ1(|d i k|2ii − γ2(|d i k|2k k,

w here t he r ates γ1 a n d γ2 are pr o p orti o n al t o t he s q u are of t he tr a nsiti o n di p ole m o me nt

|d i k|2. As a n e x a m ple, t he pr o b a bilit y c urre nt b et wee n t he st ates { b, β } re a ds:

jb β = c0ρb b − C 0ρβ β

= α ωb β3 |d b β|2 (N cρb b − ( 1 + N cβ β).

T he s p eci al c ase is t he tr a nsiti o n b et wee n t he st ates { α, β } w hic h is n ot m o dele d wit h si m ple a bs or pti o n a n d e missi o n pr o cesses. It is m o dele d s o t h at t he r ate of e xcit ati o n fr o m β t o α is zer o a n d t he r ate of dee xcit ati o n is g o ver ne d b y t he r ate Γ ,

jα β = Γ ρα α.

I n t he ge ner al c ase, t he p o p ul ati o ns are als o a ffecte d b y ter ms pr o p orti o n al t o t he d ot pr o d ucts of t he tr a nsiti o n di p ole m o me nts, d α 1 · d α 2 a n d d b 1 · d b 2, a n d t he c o here nces ρ1 2 a n d ρ2 1. T hese ter ms arise b ec a use of c o here nt e xcit ati o n t o t he u p p er de ge ner ate le vels { 1 , 2 } , i.e. w he n t he o p e n s yste m is e xcite d i nt o a s u p er p ositi o n of t hese st ates.

T he c o nser vati o n of pr o b a bilit y tells us t h at t hese ter ms m ust m o dif y t he s u ms of t he pr o b a bilit y c urre nts jb 1 + jα 1 a n d jb 2 + jα 2 c o n necte d t o t hese le vels:

˙ρ1 1 = jb 1 + jα 1 = h1ρb b + c1ρα α − (C 1 + H 11 1 − (C 1 2 + H 1 21 2 − (C 1 2 + H 1 22 1,

˙ρ2 2 = jb 2 + jα 2 = h2ρb b + c2ρα α − (C 2 + H 21 1 − (C 1 2 + H 1 21 2 − (C 1 2 + H 1 22 1. We c a n s plit t hese ne w ter ms b y disti n g uis hi n g b et wee n t he h ot a n d c ol d V-t y p e s yste ms, s uc h t h at t he c urre nts jb 1 a n d jb 2 n o w als o h a ve ter ms pr o p orti o n al t o db 1 · d b 2, a n d jα 1

a n d jα 2 ter ms pr o p orti o n al t o dα 1 · dα 2. Fi n all y, we write d o w n t he pr o b a bilit y c urre nts

2T h e a d d e d t o p r o w a n d l eft c ol u m n s er ve f or b ett er ori e nt ati o n i n t h e tr a nsiti o n m atri x.

Odkazy

Související dokumenty

Our aim is to prove that the limiting dynamics of the Schr¨ odinger evolution in a random potential under this scaling is governed by a heat equation.. Quantum correlations that

The operators of quantum multiplication with the generators pi give the quantum differential system, a consistent first-order partial differential system (see

We develop a quantum duality principle for coisotropic subgroups of a (formal) Poisson group and its dual: namely, starting from a quantum coisotropic subgroup (for a quantization of

Key words: quantum K-theory; quantum cohomology; quintic; Calabi–Yau manifolds; Gro- mov–Witten invariants; Gopakumar–Vafa invariants; q-difference equations; q-Frobenius

This article gives a short step-by-step introduction to the representation of para- metric Feynman integrals in scalar perturbative quantum field theory as periods of motives..

Our main motivation is to formulate a quantum representation of the affine Weyl groups to provide a solid basis for the study of these quantum curves and the corresponding

In the representation theory of elliptic quantum groups [13, 23], the representation space of a representation is defined as a graded vector space over the field of

In Section 5 we recall the definition of the classical Hamiltonian reduction of a commutative Poisson algebra with respect to a Lie algebra action, and define both the reduction of