

 Nedávno hledané

 Nebyly nalezeny žádné výsledky

 Tags

 Nebyly nalezeny žádné výsledky

 Dokument

 Nebyly nalezeny žádné výsledky

 Čeština

 Nahrát

 Domovská stránka

 Školy

 Témy

 Přihlášení

 	

 Odstranit

	

	

	

	Nebyly nalezeny žádné výsledky

 	

 Domovská stránka

	

 Další

 ROOT User’s Guide

 Podíl "ROOT User’s Guide"

 COPY

 N/A

 N/A

 Protected

 Akademický rok:
 2022

 Info

 Stáhnout

 Protected

 Academic year: 2022

 Podíl "ROOT User’s Guide"

 Copied!

 628

 0

 0

 628

 0

 0

 Načítání....
 (zobrazit plný text nyní)

 Zobrazit více (Stránka)

 Stáhnout nyní (628 Stránka)

 Fulltext

 (1)
ROOT User’s Guide

May 2013

(2)
(3)
Contents

Preface 21

1 Introduction 23

1.1 The ROOT Mailing Lists . . . 23

1.2 Contact Information . . . 24

1.3 Conventions Used in This Book . . . 24

1.4 The Framework . . . 24

1.4.1 What Is a Framework? . . . 24

1.4.2 Why Object-Oriented? . . . 25

1.5 Installing ROOT . . . 25

1.6 The Organization of the ROOT Framework . . . 26

1.6.1 $ROOTSYS/bin . . . 26

1.6.2 $ROOTSYS/lib . . . 28

1.6.3 $ROOTSYS/tutorials . . . 30

1.6.4 $ROOTSYS/test . . . 31

1.6.5 $ROOTSYS/include . . . 31

1.6.6 $ROOTSYS/<library> . . . 31

1.7 How to Find More Information . . . 31

1.7.1 Class Reference Guide . . . 31

2 Getting Started 35
 2.1 Setting the Environment Variables . . . 35

2.2 Start and Quit a ROOT Session . . . 36

2.3 Using the GUI . . . 37

2.3.1 Main Menus and Toolbar . . . 38

2.3.2 The Editor Frame . . . 42

2.3.3 Classes, Methods and Constructors . . . 42

2.3.4 User Interaction . . . 44

2.3.5 Building a Multi-pad Canvas . . . 46

2.3.6 Saving the Canvas . . . 46

2.3.7 Printing the Canvas . . . 47

2.4 The ROOT Command Line . . . 47

2.4.1 Multi-line Commands . . . 47

2.4.2 CINT Extensions . . . 48

2.4.3 Helpful Hints for Command Line Typing . . . 48
3

(4)2.4.4 Regular Expression . . . 48

2.5 Conventions . . . 49

2.5.1 Coding Conventions . . . 49

2.5.2 Machine Independent Types . . . 50

2.5.3 TObject . . . 50

2.6 Global Variables . . . 50

2.6.1 gROOT . . . 51

2.6.2 gFile . . . 51

2.6.3 gDirectory . . . 51

2.6.4 gPad . . . 51

2.6.5 gRandom . . . 51

2.6.6 gEnv . . . 52

2.7 Environment Setup . . . 52

2.7.1 Logon and Logoff Scripts . . . 53

2.7.2 History File . . . 53

2.7.3 Tracking Memory Leaks . . . 53

2.7.4 Memory Checker . . . 53

2.8 Converting from PAW to ROOT . . . 54

2.8.1 Converting HBOOK/PAW Files . . . 54

3 Histograms 55
 3.1 The Histogram Classes . . . 55

3.2 Creating Histograms . . . 55

3.2.1 Constant or Variable Bin Width . . . 56

3.3 Bin Numbering . . . 57

3.3.1 Convention . . . 57

3.3.2 Re-binning . . . 57

3.4 Filling Histograms . . . 57

3.4.1 Automatic Re-binning Option . . . 58

3.5 Random Numbers and Histograms . . . 58

3.6 Adding, Dividing, and Multiplying . . . 59

3.7 Projections . . . 59

3.8 Drawing Histograms . . . 60

3.8.1 Setting the Style . . . 60

3.8.2 Draw Options . . . 60

3.8.3 Drawing a Sub-range of a 2-D Histogram . . . 77

3.8.4 Superimposing Histograms with Different Scales . . . 77

3.8.5 Statistics Display . . . 79

3.8.6 Setting Line, Fill, Marker, and Text Attributes . . . 79

3.8.7 Setting Tick Marks on the Axis . . . 80

3.8.8 Giving Titles to the X, Y and Z Axis . . . 80

3.9 Making a Copy of an Histogram . . . 80

3.10 Normalizing Histograms . . . 81

(5)CONTENTS 5

3.11 Saving/Reading Histograms to/from a File . . . 81

3.12 Miscellaneous Operations . . . 81

3.13 Alphanumeric Bin Labels . . . 82

3.13.1 Option 1: SetBinLabel . . . 82

3.13.2 Option 2: Fill . . . 83

3.13.3 Option 3: TTree::Draw . . . 83

3.13.4 Sort Options . . . 83

3.14 Histogram Stacks . . . 84

3.15 TH2Poly . . . 85

3.16 Profile Histograms . . . 85

3.16.1 Build Options . . . 86

3.16.2 Drawing a Profile without Error Bars . . . 88

3.16.3 Create a Profile from a 2D Histogram . . . 88

3.16.4 Create a Histogram from a Profile . . . 88

3.16.5 Generating a Profile from a TTree . . . 88

3.16.6 2D Profiles . . . 89

3.17 Iso Surfaces . . . 90

3.18 3D Implicit Functions . . . 90

3.19 TPie . . . 90

3.20 The User Interface for Histograms . . . 93

3.20.1 TH1Editor . . . 93

3.20.2 TH2Editor . . . 95

4 Graphs 99
 4.1 TGraph . . . 99

4.1.1 Graph Draw Options . . . 99

4.2 Superimposing Two Graphs . . . 103

4.3 Graphs with Error Bars . . . 104

4.4 Graphs with Asymmetric Error Bars . . . 105

4.5 Graphs with Asymmetric Bent Errors . . . 106

4.6 TGraphPolar . . . 107

4.7 TGraph Exclusion Zone . . . 109

4.8 TGraphQQ . . . 110

4.8.1 Two Datasets . . . 110

4.8.2 One Dataset . . . 111

4.9 TMultiGraph . . . 111

4.10 TGraph2D . . . 112

4.11 TGraph2DErrors . . . 114

4.12 Fitting a Graph . . . 114

4.13 Setting the Graph’s Axis Title . . . 116

4.14 Zooming a Graph . . . 116

4.15 The User Interface for Graphs . . . 117

(6)5 Fitting Histograms 119

5.1 The Fit Method . . . 119

5.2 Fit with a Predefined Function . . . 120

5.3 Fit with a User-Defined Function . . . 120

5.3.1 Creating a TF1 with a Formula . . . 120

5.3.2 Creating a TF1 with Parameters . . . 120

5.3.3 Creating a TF1 with a User Function . . . 121

5.4 Fixing and Setting Parameters’ Bounds . . . 122

5.5 Fitting Sub Ranges . . . 123

5.6 The Fit Panel . . . 123

5.6.1 Function Choice and Settings . . . 123

5.6.2 Fitter Settings . . . 123

5.6.3 Draw Options . . . 125

5.6.4 Print Options . . . 125

5.6.5 Command Buttons . . . 125

5.7 Fitting Multiple Sub Ranges . . . 125

5.8 Adding Functions to the List . . . 127

5.9 Combining Functions . . . 127

5.10 Associated Function . . . 128

5.11 Access to the Fit Parameters and Results . . . 128

5.12 Associated Errors . . . 129

5.13 Fit Statistics . . . 129

5.14 The Minimization Package . . . 129

5.14.1 Basic Concepts of Minuit . . . 130

5.14.2 The Transformation of Limited Parameters . . . 130

5.14.3 How to Get the Right Answer from Minuit . . . 131

5.14.4 Reliability of Minuit Error Estimates . . . 131

5.15 FUMILI Minimization Package . . . 132

5.16 Neural Networks . . . 133

5.16.1 Introduction . . . 133

5.16.2 The MLP . . . 134

5.16.3 Learning Methods . . . 134

5.16.4 Using the Network . . . 135

5.16.5 Examples . . . 136

6 A Little C++ 139
 6.1 Classes, Methods and Constructors . . . 139

6.2 Inheritance and Data Encapsulation . . . 140

6.2.1 Method Overriding . . . 140

6.2.2 Data Encapsulation . . . 140

6.3 Creating Objects on the Stack and Heap . . . 141

(7)CONTENTS 7

7 CINT the C++ Interpreter 145

7.1 What is CINT? . . . 145

7.2 The ROOT Command Line Interface . . . 146

7.3 The ROOT Script Processor . . . 148

7.3.1 Un-named Scripts . . . 148

7.3.2 Named Scripts . . . 148

7.3.3 Executing a Script from a Script . . . 150

7.4 Resetting the Interpreter Environment . . . 150

7.5 A Script Containing a Class Definition . . . 151

7.6 Debugging Scripts . . . 152

7.7 Inspecting Objects . . . 153

7.8 ROOT/CINT Extensions to C++ . . . 153

7.9 ACLiC - The Automatic Compiler of Libraries for CINT . . . 155

7.9.1 Usage . . . 156

7.9.2 Setting the Include Path . . . 157

7.9.3 Dictionary Generation . . . 157

7.9.4 Intermediate Steps and Files . . . 158

7.9.5 Moving between Interpreter and Compiler . . . 158

7.10 Reflex . . . 159

7.10.1 Overview . . . 160

7.10.2 Selecting Types And Members . . . 160

7.10.3 Genreflex and Templates . . . 161

7.10.4 GCCXML Installation . . . 161

7.10.5 Reflex API . . . 161

7.10.6 Cintex . . . 164

8 Object Ownership 165
 8.1 Ownership by Current Directory (gDirectory) . . . 165

8.2 Ownership by the Master TROOT Object (gROOT) . . . 166

8.2.1 The Collection of Specials . . . 166

8.2.2 Access to the Collection Contents . . . 166

8.3 Ownership by Other Objects . . . 167

8.4 Ownership by the User . . . 167

8.4.1 The kCanDelete Bit . . . 167

8.4.2 The kMustCleanup Bit . . . 168

9 Graphics and the Graphical User Interface 169
 9.1 Drawing Objects . . . 169

9.2 Interacting with Graphical Objects . . . 169

9.2.1 Moving, Resizing and Modifying Objects . . . 170

9.2.2 Selecting Objects . . . 171

9.2.3 Context Menus: the Right Mouse Button . . . 171

9.2.4 Executing Events when a Cursor Passes on Top of an Object . . . 173

(8)9.3 Graphical Containers: Canvas and Pad . . . 174

9.3.1 The Global Pad: gPad . . . 176

9.3.2 The Coordinate Systems of a Pad . . . 177

9.3.3 Converting between Coordinate Systems . . . 178

9.3.4 Dividing a Pad into Sub-pads . . . 178

9.3.5 Updating the Pad . . . 180

9.3.6 Making a Pad Transparent . . . 180

9.3.7 Setting the Log Scale . . . 180

9.3.8 WaitPrimitive method . . . 181

9.3.9 Locking the Pad . . . 181

9.4 Graphical Objects . . . 181

9.4.1 Lines, Arrows and Polylines . . . 181

9.4.2 Circles and Ellipses . . . 183

9.4.3 Rectangles . . . 184

9.4.4 Markers . . . 184

9.4.5 Curly and Wavy Lines for Feynman Diagrams . . . 186

9.4.6 Text and Latex Mathematical Expressions . . . 187

9.4.7 Greek Letters . . . 188

9.4.8 Mathematical Symbols . . . 188

9.4.9 Text in a Pad . . . 193

9.4.10 The TeX Processor TMathText . . . 194

9.5 Axis . . . 194

9.5.1 Axis Title . . . 196

9.5.2 Axis Options and Characteristics . . . 196

9.5.3 Setting the Number of Divisions . . . 197

9.5.4 Zooming the Axis . . . 197

9.5.5 Drawing Axis Independently of Graphs or Histograms . . . 197

9.5.6 Orientation of Tick Marks on Axis . . . 198

9.5.7 Labels . . . 198

9.5.8 Axis with Time Units . . . 200

9.5.9 Axis Examples . . . 204

9.6 Graphical Objects Attributes . . . 208

9.6.1 Text Attributes . . . 208

9.6.2 Line Attributes . . . 211

9.6.3 Fill Attributes . . . 212

9.6.4 Color and Color Palettes . . . 212

9.7 The Graphics Editor . . . 215

9.7.1 TAxisEditor . . . 215

9.7.2 TPadEditor . . . 216

9.8 Copy and Paste . . . 216

9.8.1 Using the GUI . . . 216

9.8.2 Programmatically . . . 218

9.9 Legends . . . 218

(9)CONTENTS 9

9.10 The PostScript Interface . . . 219

9.10.1 Special Characters . . . 222

9.10.2 Writing Several Canvases to the Same PostScript File . . . 222

9.10.3 The Color Models . . . 224

9.11 The PDF Interface . . . 224

9.12 Create or Modify a Style . . . 225

9.13 3D Viewers . . . 227

9.13.1 Invoking a 3D viewer . . . 227

9.13.2 The GL Viewer . . . 228

9.13.3 The X3D Viewer . . . 235

9.13.4 Common 3D Viewer Architecture . . . 235

10 Folders and Tasks 243
 10.1 Folders . . . 243

10.2 Why Use Folders? . . . 243

10.3 How to Use Folders . . . 243

10.3.1 Creating a Folder Hierarchy . . . 243

10.3.2 Posting Data to a Folder (Producer) . . . 245

10.3.3 Reading Data from a Folder (Consumer) . . . 245

10.4 Tasks . . . 247

10.5 Execute and Debug Tasks . . . 250

11 Input/Output 251
 11.1 The Physical Layout of ROOT Files . . . 251

11.1.1 The File Header . . . 252

11.1.2 The Top Directory Description . . . 253

11.1.3 The Histogram Records . . . 253

11.1.4 The Class Description List (StreamerInfo List) . . . 254

11.1.5 The List of Keys and the List of Free Blocks . . . 255

11.1.6 File Recovery . . . 255

11.2 The Logical ROOT File: TFile and TKey . . . 255

11.2.1 Viewing the Logical File Contents . . . 256

11.2.2 The Current Directory . . . 258

11.2.3 Objects in Memory and Objects on Disk . . . 259

11.2.4 Saving Histograms to Disk . . . 261

11.2.5 Histograms and the Current Directory . . . 262

11.2.6 Saving Objects to Disk . . . 263

11.2.7 Saving Collections to Disk . . . 263

11.2.8 A TFile Object Going Out of Scope . . . 264

11.2.9 Retrieving Objects from Disk . . . 264

11.2.10 Subdirectories and Navigation . . . 264

11.3 Streamers . . . 266

11.3.1 Automatically Generated Streamers . . . 267

(10)11.3.2 Transient Data Members (//!) . . . 267

11.3.3 The Pointer to Objects (//->) . . . 268

11.3.4 Variable Length Array . . . 268

11.3.5 Double32_t . . . 268

11.3.6 Prevent Splitting (//||) . . . 268

11.3.7 Streamers with Special Additions . . . 270

11.3.8 Writing Objects . . . 270

11.3.9 Ignore Object Streamers . . . 271

11.3.10 Streaming a TClonesArray . . . 271

11.4 Pointers and References in Persistency . . . 271

11.4.1 Streaming C++ Pointers . . . 272

11.4.2 Motivation for the TRef Class . . . 272

11.4.3 Using TRef . . . 272

11.4.4 How Does It Work? . . . 273

11.4.5 Action on Demand . . . 274

11.4.6 Array of TRef . . . 275

11.5 Schema Evolution . . . 275

11.5.1 The TStreamerInfo Class . . . 276

11.5.2 The TStreamerElement Class . . . 277

11.5.3 Example: TH1 StreamerInfo . . . 277

11.5.4 Optimized StreamerInfo . . . 278

11.5.5 Automatic Schema Evolution . . . 278

11.5.6 Manual Schema Evolution . . . 278

11.5.7 Building Class Definitions with the StreamerInfo . . . 279

11.5.8 Example: MakeProject . . . 279

11.6 Migrating to ROOT 3 . . . 281

11.7 Compression and Performance . . . 282

11.8 Remotely Access to ROOT Files via a rootd . . . 282

11.8.1 TNetFile URL . . . 282

11.8.2 Remote Authentication . . . 283

11.8.3 A Simple Session . . . 283

11.8.4 The rootd Daemon . . . 283

11.8.5 Starting rootd via inetd . . . 284

11.8.6 Command Line Arguments for rootd . . . 284

11.9 Reading ROOT Files via Apache Web Server . . . 284

11.9.1 Using the General Open Function of TFile . . . 285

11.10XML Interface . . . 285

(11)CONTENTS 11

12 Trees 287

12.1 Why Should You Use a Tree? . . . 287

12.2 A Simple TTree . . . 287

12.3 Show an Entry with TTree::Show . . . 288

12.4 Print the Tree Structure with TTree::Print . . . 289

12.5 Scan a Variable the Tree with TTree::Scan . . . 289

12.6 The Tree Viewer . . . 289

12.7 Creating and Saving Trees . . . 291

12.7.1 Creating a Tree from a Folder Hierarchy . . . 291

12.7.2 Tree and TRef Objects . . . 293

12.7.3 Autosave . . . 293

12.7.4 Trees with Circular Buffers . . . 293

12.7.5 Size of TTree in the File . . . 293

12.7.6 User Info Attached to a TTree Object . . . 294

12.7.7 Indexing a Tree . . . 294

12.8 Branches . . . 294

12.9 Adding a Branch to Hold a List of Variables . . . 295

12.10Adding a TBranch to Hold an Object . . . 296

12.10.1 Setting the Split-level . . . 296

12.10.2 Exempt a Data Member from Splitting . . . 298

12.10.3 Adding a Branch to Hold a TClonesArray . . . 298

12.10.4 Identical Branch Names . . . 298

12.11Adding a Branch with a Folder . . . 298

12.12Adding a Branch with a Collection . . . 299

12.13Examples for Writing and Reading Trees . . . 299

12.14Example 1: A Tree with Simple Variables . . . 299

12.14.1 Writing the Tree . . . 300

12.14.2 Viewing the Tree . . . 300

12.14.3 Reading the Tree . . . 302

12.15Example 2: A Tree with a C Structure . . . 303

12.15.1 Writing the Tree . . . 305

12.15.2 Analysis . . . 306

12.16Example 3: Adding Friends to Trees . . . 308

12.16.1 Adding a Branch to an Existing Tree . . . 308

12.16.2 TTree::AddFriend . . . 308

12.17Example 4: A Tree with an Event Class . . . 311

12.17.1 The Event Class . . . 311

12.17.2 The EventHeader Class . . . 311

12.17.3 The Track Class . . . 312

12.17.4 Writing the Tree . . . 312

12.17.5 Reading the Tree . . . 313

12.18Example 5: Import an ASCII File into a TTree . . . 315

12.19Trees in Analysis . . . 315

(12)12.20Simple Analysis Using TTree::Draw . . . 316

12.20.1 Using Selection with TTree:Draw . . . 317

12.20.2 Using TCut Objects in TTree::Draw . . . 317

12.20.3 Accessing the Histogram in Batch Mode . . . 318

12.20.4 Using Draw Options in TTree::Draw . . . 318

12.20.5 Superimposing Two Histograms . . . 319

12.20.6 Setting the Range in TTree::Draw . . . 319

12.20.7 TTree::Draw Examples . . . 319

12.20.8 Multiple variables visualisation . . . 327

12.20.9 Using TTree::Scan . . . 335

12.20.10TEventList and TEntryList . . . 336

12.20.11Filling a Histogram . . . 339

12.21Using TTree::MakeClass . . . 341

12.21.1 Creating a Class with MakeClass . . . 341

12.21.2 MyClass.h . . . 342

12.21.3 MyClass.C . . . 343

12.21.4 Modifying MyClass::Loop . . . 343

12.21.5 Loading MyClass . . . 344

12.22Using TTree::MakeSelector . . . 345

12.22.1 Performance Benchmarks . . . 346

12.23Impact of Compression on I/O . . . 346

12.24Chains . . . 347

12.24.1 TChain::AddFriend . . . 348

13 Math Libraries in ROOT 349
 13.1 TMath . . . 349

13.2 Random Numbers . . . 350

13.2.1 TRandom . . . 350

13.2.2 TRandom1 . . . 350

13.2.3 TRandom2 . . . 350

13.2.4 TRandom3 . . . 350

13.2.5 Seeding the Generators . . . 351

13.2.6 Examples of Using the Generators . . . 351

13.2.7 Random Number Distributions . . . 351

13.2.8 UNURAN . . . 352

13.2.9 Performances of Random Numbers . . . 353

13.3 MathCore Library . . . 353

13.4 Generic Vectors for 2, 3 and 4 Dimensions (GenVector) . . . 354

13.4.1 Main Characteristics . . . 354

13.4.2 Example: 3D Vector Classes . . . 356

13.4.3 Example: 3D Point Classes . . . 359

13.4.4 Example: LorentzVector Classes . . . 360

13.4.5 Example: Vector Transformations . . . 362

(13)CONTENTS 13

13.4.6 Example with External Packages . . . 365

13.5 MathMore Library . . . 365

13.6 Mathematical Functions . . . 366

13.6.1 Special Functions in MathCore . . . 366

13.6.2 Special Functions in MathMore . . . 367

13.6.3 Probability Density Functions (PDF) . . . 368

13.6.4 Cumulative Distribution Functions (CDF) . . . 369

13.7 Linear Algebra: SMatrix Package . . . 370

13.7.1 Example: Vector Class (SVector) . . . 370

13.7.2 Example: Matrix Class (SMatrix) . . . 371

13.7.3 Example: Matrix and Vector Functions and Operators . . . 374

13.7.4 Matrix and Vector Functions . . . 375

13.8 Minuit2 Package . . . 375

13.9 ROOT Statistics Classes . . . 376

13.9.1 Classes for Computing Limits and Confidence Levels . . . 376

13.9.2 Specialized Classes for Fitting . . . 376

13.9.3 Multi-variate Analysis Classes . . . 377

14 Linear Algebra in ROOT 379
 14.1 Overview of Matrix Classes . . . 379

14.2 Matrix Properties . . . 381

14.2.1 Accessing Properties . . . 381

14.2.2 Setting Properties . . . 381

14.3 Creating and Filling a Matrix . . . 382

14.4 Matrix Operators and Methods . . . 383

14.4.1 Arithmetic Operations between Matrices . . . 384

14.4.2 Arithmetic Operations between Matrices and Real Numbers . . . 384

14.4.3 Comparisons and Boolean Operations . . . 384

14.4.4 Matrix Norms . . . 384

14.4.5 Miscellaneous Operators . . . 385

14.5 Matrix Views . . . 385

14.5.1 View Operators . . . 386

14.5.2 View Examples . . . 387

14.6 Matrix Decompositions . . . 387

14.6.1 Tolerances and Scaling . . . 389

14.6.2 Condition number . . . 389

14.6.3 LU . . . 390

14.6.4 Bunch-Kaufman . . . 390

14.6.5 Cholesky . . . 391

14.6.6 QRH . . . 391

14.6.7 SVD . . . 391

14.7 Matrix Eigen Analysis . . . 392

14.8 Speed Comparisons . . . 392

(14)15 Adding a Class 395

15.1 The Role of TObject . . . 395

15.1.1 Introspection, Reflection and Run Time Type Identification . . . 395

15.1.2 Collections . . . 395

15.1.3 Input/Output . . . 396

15.1.4 Paint/Draw . . . 396

15.1.5 Clone/DrawClone . . . 396

15.1.6 Browse . . . 396

15.1.7 SavePrimitive . . . 396

15.1.8 GetObjectInfo . . . 396

15.1.9 IsFolder . . . 396

15.1.10 Bit Masks and Unique ID . . . 396

15.2 Motivation . . . 397

15.2.1 Template Support . . . 398

15.3 The Default Constructor . . . 399

15.4 rootcint: The CINT Dictionary Generator . . . 399

15.4.1 Dictionaries for STL . . . 402

15.5 Adding a Class with a Shared Library . . . 402

15.5.1 The LinkDef.h File . . . 402

15.6 Adding a Class with ACLiC . . . 408

16 Collection Classes 411
 16.1 Understanding Collections . . . 411

16.1.1 General Characteristics . . . 411

16.1.2 Determining the Class of Contained Objects . . . 412

16.1.3 Types of Collections . . . 412

16.1.4 Ordered Collections (Sequences) . . . 412

16.2 Iterators: Processing a Collection . . . 413

16.3 Foundation Classes . . . 413

16.4 A Collectable Class . . . 414

16.5 The TIter Generic Iterator . . . 415

16.6 The TList Collection . . . 416

16.6.1 Iterating Over a TList . . . 416

16.7 The TObjArray Collection . . . 417

16.8 TClonesArray An Array of Identical Objects . . . 418

16.8.1 The Idea Behind TClonesArray . . . 418

16.9 Template Containers and STL . . . 419

(15)CONTENTS 15

17 Physics Vectors 421

17.1 The Physics Vector Classes . . . 421

17.2 TVector3 . . . 421

17.2.1 Declaration / Access to the Components . . . 422

17.2.2 Other Coordinates . . . 422

17.2.3 Arithmetic / Comparison . . . 423

17.2.4 Related Vectors . . . 423

17.2.5 Scalar and Vector Products . . . 423

17.2.6 Angle between Two Vectors . . . 423

17.2.7 Rotation around Axes . . . 423

17.2.8 Rotation around a Vector . . . 423

17.2.9 Rotation by TRotation Class . . . 424

17.2.10 Transformation from Rotated Frame . . . 424

17.3 TRotation . . . 424

17.3.1 Declaration, Access, Comparisons . . . 424

17.3.2 Rotation around Axes . . . 424

17.3.3 Rotation around Arbitrary Axis . . . 425

17.3.4 Rotation of Local Axes . . . 425

17.3.5 Inverse Rotation . . . 425

17.3.6 Compound Rotations . . . 425

17.3.7 Rotation of TVector3 . . . 425

17.4 TLorentzVector . . . 426

17.4.1 Declaration . . . 426

17.4.2 Access to Components . . . 426

17.4.3 Vector Components in Non-Cartesian Coordinates . . . 427

17.4.4 Arithmetic and Comparison Operators . . . 427

17.4.5 Magnitude/Invariant mass, beta, gamma, scalar product . . . 427

17.4.6 Lorentz Boost . . . 428

17.4.7 Rotations . . . 428

17.4.8 Miscellaneous . . . 428

17.5 TLorentzRotation . . . 429

17.5.1 Declaration . . . 429

17.5.2 Access to the Matrix Components/Comparisons . . . 429

17.5.3 Transformations of a Lorentz Rotation . . . 429

17.5.4 Transformation of a TLorentzVector . . . 430

17.5.5 Physics Vector Example . . . 430

18 The Geometry Package 431
 18.1 Quick Start: Creating the “world” . . . 431

18.1.1 Example 1: Creating the World . . . 431

18.1.2 Example 2: A Geometrical Hierarchy Look and Feel . . . 432

18.2 Materials and Tracking Media . . . 434

18.2.1 Elements, Materials and Mixtures . . . 434

(16)18.2.2 Radionuclides . . . 436

18.2.3 Tracking Media . . . 439

18.2.4 User Interface for Handling Materials and Media . . . 439

18.3 Shapes . . . 439

18.3.1 Units . . . 440

18.3.2 Primitive Shapes . . . 440

18.3.3 Composite Shapes . . . 453

18.3.4 Navigation Methods Performed By Shapes . . . 457

18.3.5 Creating Shapes . . . 458

18.3.6 Dividing Shapes . . . 459

18.3.7 Parametric Shapes . . . 459

18.4 Geometry Creation . . . 459

18.4.1 The Volume Hierarchy . . . 460

18.4.2 Creating and Positioning Volumes . . . 462

18.4.3 Geometrical Transformations . . . 468

18.4.4 Ownership of Geometry Objects . . . 471

18.5 Navigation and Tracking . . . 472

18.5.1 TGeoNavigator Class . . . 472

18.5.2 Initializing the Starting Point . . . 472

18.5.3 Initializing the Direction . . . 473

18.5.4 Initializing the State . . . 473

18.5.5 Checking the Current State . . . 473

18.5.6 Saving and Restoring the Current State . . . 475

18.5.7 Navigation Queries . . . 475

18.5.8 Creating and Visualizing Tracks . . . 478

18.6 Checking the Geometry . . . 479

18.6.1 The Overlap Checker . . . 480

18.6.2 Graphical Checking Methods . . . 482

18.7 The Drawing Package . . . 485

18.7.1 Drawing Volumes and Hierarchies of Volumes . . . 485

18.7.2 Visualization Settings and Attributes . . . 486

18.7.3 Ray Tracing . . . 487

18.8 Representing Misalignments of the Ideal Geometry . . . 488

18.8.1 Physical Nodes . . . 488

18.9 Geometry I/O . . . 490

18.9.1 GDML . . . 491

18.10Navigation Algorithms . . . 491

18.10.1 Finding the State Corresponding to a Location (x,y,z) . . . 491

18.10.2 Finding the Distance to Next Crossed Boundary . . . 492

18.11Geometry Graphical User Interface . . . 496

18.11.1 Editing a Geometry . . . 496

18.11.2 The Geometry Manager Editor . . . 499

18.11.3 Editing Existing Objects . . . 500

(17)CONTENTS 17

18.11.4 Creation of New Objects . . . 503

18.11.5 Editing Volumes . . . 503

18.11.6 How to Create a Valid Geometry with Geometry Editors . . . 507

19 Python and Ruby Interfaces 509
 19.1 PyROOT Overview . . . 509

19.1.1 Glue-ing Applications . . . 509

19.1.2 Access to ROOT from Python . . . 510

19.1.3 Access to Python from ROOT . . . 510

19.1.4 Installation . . . 511

19.1.5 Using PyROOT . . . 511

19.1.6 Memory Handling . . . 515

19.1.7 Performance . . . 516

19.1.8 Use of Python Functions . . . 516

19.1.9 Working with Trees . . . 518

19.1.10 Using Your Own Classes . . . 520

19.2 How to Use ROOT with Ruby . . . 520

19.2.1 Building and Installing the Ruby Module . . . 521

20 The Tutorials and Tests 523
 20.1 $ROOTSYS/tutorials . . . 523

20.2 $ROOTSYS/test . . . 523

20.2.1 Event - An Example of a ROOT Application . . . 525

20.2.2 stress - Test and Benchmark . . . 527

20.2.3 guitest - A Graphical User Interface . . . 531

21 Example Analysis 533
 21.1 Explanation . . . 533

21.2 Script . . . 536

22 Networking 541
 22.1 Setting-up a Connection . . . 541

22.2 Sending Objects over the Network . . . 541

22.3 Closing the Connection . . . 542

22.4 A Server with Multiple Sockets . . . 542

23 Threads 545
 23.1 Threads and Processes . . . 545

23.1.1 Process Properties . . . 545

23.1.2 Thread Properties . . . 545

23.1.3 The Initial Thread . . . 546

23.2 Implementation of Threads in ROOT . . . 546

23.2.1 Installation . . . 546

23.2.2 Classes . . . 546

23.2.3 TThread for Pedestrians . . . 546

(18)23.2.4 TThread in More Details . . . 547

23.3 Advanced TThread: Launching a Method in a Thread . . . 550

23.3.1 Known Problems . . . 551

23.4 The Signals of ROOT . . . 551

23.5 Glossary . . . 552

24 PROOF: Parallel Processing 555
 25 Writing a Graphical User Interface 557
 25.1 The ROOT GUI Classes . . . 557

25.2 Widgets and Frames . . . 557

25.3 TVirtualX . . . 558

25.4 A Simple Example . . . 558

25.4.1 A Standalone Version . . . 562

25.5 Widgets Overview . . . 564

25.5.1 TGObject . . . 564

25.5.2 TGWidget . . . 564

25.5.3 TGWindow . . . 565

25.5.4 Frames . . . 566

25.6 Layout Management . . . 568

25.7 Event Processing: Signals and Slots . . . 570

25.8 Widgets in Detail . . . 575

25.8.1 Buttons . . . 575

25.8.2 Text Entries . . . 578

25.8.3 Number Entries . . . 579

25.8.4 Menus . . . 581

25.8.5 Toolbar . . . 582

25.8.6 List Boxes . . . 584

25.8.7 Combo Boxes . . . 585

25.8.8 Sliders . . . 586

25.8.9 Triple Slider . . . 587

25.8.10 Progress Bars . . . 587

25.8.11 Static Widgets . . . 588

25.8.12 Status Bar . . . 588

25.8.13 Splitters . . . 589

25.8.14 TGCanvas, ViewPort and Container . . . 591

25.8.15 Embedded Canvas . . . 591

25.9 The ROOT Graphics Editor (GED) . . . 592

25.9.1 Object Editors . . . 592

25.9.2 Editor Design Elements . . . 593

25.10Drag and Drop . . . 594

25.10.1 Drag and Drop Data Class . . . 595

25.10.2 Handling Drag and Drop Events . . . 595

(19)CONTENTS 19

26 ROOT/Qt Integration Interfaces 597

26.1 Qt-ROOT Implementation of TVirtualX Interface (BNL) . . . 597

26.1.1 Installation . . . 597

26.1.2 Applications . . . 598

26.1.3 TQtWidget Class, Qt Signals / Slots and TCanvas Interface . . . 605

26.2 GSI QtROOT . . . 607

26.2.1 Create a New Project in the Designer . . . 609

26.2.2 main() . . . 609

27 Automatic HTML Documentation 611
 27.1 Reference Guide . . . 611

27.1.1 Product and Module Documentation . . . 612

27.2 Converting Sources (and Other Files) to HTML . . . 612

27.3 Special Documentation Elements: Directives . . . 612

27.3.1 Latex Directive . . . 613

27.3.2 Macro Directive . . . 613

27.4 Customizing HTML . . . 614

27.4.1 Referencing Documentation for other Libraries . . . 614

27.4.2 Search Engine . . . 614

27.4.3 ViewCVS . . . 614

27.4.4 Wiki Pages . . . 614

27.5 Tutorial . . . 614

28 Appendix A: Install and Build ROOT 615
 28.1 License . . . 615

28.2 Installing ROOT . . . 615

28.3 Choosing a Version . . . 615

28.4 Installing Precompiled Binaries . . . 615

28.5 Installing the Source . . . 616

28.5.1 Installing and Building the Source from a Compressed File . . . 616

28.5.2 More Build Options . . . 616

28.6 File system.rootrc . . . 617

28.6.1 TCanvas Specific Settings . . . 619

28.6.2 THtml Specific Settings . . . 620

28.6.3 GUI Specific Settings . . . 621

28.6.4 TBrowser Settings . . . 622

28.6.5 TRint Specific Settings . . . 622

28.6.6 ACLiC Specific Settings . . . 623

28.6.7 PROOF Related Variables . . . 623

28.7 Documentation to Download . . . 627

(20)
(21)
Preface

In late 1994, we decided to learn and investigate Object Oriented programming and C++ to better judge the suitability
 of these relatively new techniques for scientific programming. We knew that there is no better way to learn a new
 programming environment than to use it to write a program that can solve a real problem. After a few weeks, we
 had our first histogramming package in C++. A few weeks later we had a rewrite of the same package using the,
 at that time, very new template features of C++. Again, a few weeks later we had another rewrite of the package
 without templates since we could only compile the version with templates on one single platform using a specific
 compiler. Finally, after about four months we had a histogramming package that was faster and more efficient than the
 well-known FORTRAN based HBOOK histogramming package. This gave us enough confidence in the new technologies
 to decide to continue the development. Thus was born ROOT. Since its first public release at the end of 1995, ROOT
 has enjoyed an ever-increasing popularity. Currently it is being used in all major High Energy and Nuclear Physics
 laboratories around the world to monitor, to store and to analyse data. In the other sciences as well as the medical and
 financial industries, many people are using ROOT. We estimate the current user base to be around several thousand
 people. In 1997, Eric Raymond analysed in his paper “The Cathedral and the Bazaar” the development method that
 makes Linux such a success. The essence of that method is: “release early, release often and listen to your customers”.

This is precisely how ROOT is being developed. Over the last five years, many of our “customers” became co-developers.

Here we would like to thank our main co-developers and contributors:

Masaharu Gotowrote the CINT C++ interpreter that became an essential part of ROOT. Despite being 8 time
 zones ahead of us, we have the feeling he has been sitting in the room next door since 1995.

Andrei and Mihaela Gheata (Alice collaboration) are co-authors of the ROOT geometry classes and Virtual
 Monte-Carlo. They have been working with the ROOT team since 2000.

Olivier Couet, who after a successful development and maintenance of PAW, has joined the ROOT team in 2000 and
 has been working on the graphics sub-system.

Ilka Antchevahas been working on the Graphical User Interface classes. She is also responsible for this latest edition
 of the Users Guide with a better style, improved index and several new chapters (since 2002).

Bertrand Bellenothas been developing and maintaining the Win32GDK version of ROOT. Bertrand has also many
 other contributions like the nice RootShower example (since 2001).

Valeriy Onoutchin has been working on several ROOT packages, in particular the graphics sub-system for Windows
 and the GUI Builder (since 2000).

Gerri Ganishas been working on the authentication procedures to be used by the root daemons and the PROOF
 system (since 2002).

Maarten Ballintijn(MIT) is one of the main developers of the PROOF sub-system (since 1995).

Valeri Fine(now at BNL) ported ROOT to Windows and contributed largely to the 3-D graphics. He is currently
 working on the Qt layer of ROOT (since 1995).

Victor Perevoztchikov (BNL) worked on key elements of the I/O system, in particular the improved support for
 STL collections (1997-2001).

Nenad Buncicdeveloped the HTML documentation generation system and integrated the X3D viewer inside ROOT
 (1995-1997).

Suzanne Panacekwas the author of the first version of this User’s Guide and very active in preparing tutorials and
 giving lectures about ROOT (1999-2002).

Axel Naumannhas been developing further the HTML Reference Guide and helps in porting ROOT under Windows
 (cygwin/gcc implementation) (since 2000).

Anna Kreshukhas developed the Linear Fitter and Robust Fitter classes as well as many functions in TMath, TF1,
 TGraph (since 2005).

Richard Maunderhas contributed to the GL viewer classes (since 2004).

21

(22)Timur Pocheptsovhas contributed to the GL viewer classes and GL in pad classes (since 2004).

Sergei Linevhas developed the XML driver and the TSQLFile classes (since 2003).

Stefan Roiserhas been contributing to the reflex and cintex packages (since 2005).

Lorenzo Monetahas been contributing the MathCore, MathMore, Smatrix & Minuit2 packages (since 2005).

Wim Lavrijsenis the author of the PyRoot package (since 2004).

Further we would like to thank all the people mentioned in the$ROOTSYS/README/CREDITS file for their contributions,
 and finally, everybody who gave comments, reported bugs and provided fixes.

Happy ROOTing!

Rene Brun & Fons Rademakers
Geneva, July 2007

(23)
Chapter 1

Introduction

In the mid 1990’s, René Brun and Fons Rademakers had many years of experience developing interactive tools and
 simulation packages. They had lead successful projects such as PAW, PIAF, and GEANT, and they knew PAW the
 twenty-year-old FORTRAN libraries had reached their limits. Although still very popular, these tools could not scale
 up to the challenges offered by the Large Hadron Collider, where the data is a few orders of magnitude larger than
 anything seen before.

At the same time, computer science had made leaps of progress especially in the area of Object Oriented Design, and
 René and Fons were ready to take advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49 has generated an impressive amount of
 data, around 10 Terabytes per run. This rate provided the ideal environment to develop and test the next generation
 data analysis.

One cannot mention ROOT without mentioning CINT, its C++ interpreter. CINT was created by Masa Goto in
 Japan. It is an independent product, which ROOT is using for the command line and script processor.

ROOT was, and still is, developed in the “Bazaar style”, a term from the book “The Cathedral and the Bazaar” by
 Eric S. Raymond. It means a liberal, informal development style that heavily relies on the diverse and deep talent of
 the user community. The result is that physicists developed ROOT for themselves; this made it specific, appropriate,
 useful, and over time refined and very powerful. The development of ROOT is a continuous conversation between users
 and developers with the line between the two blurring at times and the users becoming co-developers.

When it comes to storing and mining large amount of data, physics plows the way with its Terabytes, but other fields
 and industry follow close behind as they acquiring more and more data over time. They are ready to use the true and
 tested technologies physics has invented. In this way, other fields and industries have found ROOT useful and they
 have started to use it also.

In the bazaar view, software is released early and frequently to expose it to thousands of eager co-developers to pound
 on, report bugs, and contribute possible fixes. More users find more bugs, because they stress the program in different
 ways. By now, after ten years, the age of ROOT is quite mature. Most likely, you will find the features you are looking
 for, and if you have found a hole, you are encouraged to participate in the dialog and post your suggestion or even
 implementation onroottalk, the ROOT mailing list.

1.1 The ROOT Mailing Lists

Theroottalkwas the very first active ROOT mailing list. mailing list People can subscribe to it by registering at the
 ROOT web site: http://root.cern.ch/root/Registration.phtml. TheRootTalkForumhttp://root.cern.ch/phpBB3/has
 been gradually replaced this mailing list since September 2003. TheRootTalkForum is a web-based news group with
 about 10 discussion sub-units.

If you have a question, it is likely that it has been asked, answered, and stored in theroottalkorRootTalkForum
 archives. Please use the search engine to see if your question has already been answered before sending a mail to the
 roottalklist or post a topic in the Forum.

You can browse the roottalkarchives at: http://root.cern.ch/root/roottalk/AboutRootTalk.html. You can send your
 question without subscribing to: roottalk@cern.ch

23

(24)
1.2 Contact Information

Several authors wrote this book and you may see a “change of voice” from one chapter to the next. We felt we could
 accept this in order to have the expert explain what they know best. If you would like to contribute a chapter or
 add to a section, please contactrootdoc@cern.ch. We count on you to send us suggestions on additional topics or on
 the topics that need more documentation. Please send your comments, corrections, questions, and suggestions to the
 rootdoclist: rootdoc@cern.ch

We attempt to give the user insight into the many capabilities of ROOT. The book begins with the elementary
 functionality and progresses in complexity reaching the specialized topics at the end. The experienced user looking for
 special topics may find these chapters useful: see “Networking”, “Writing a Graphical User Interface”, “Threads”, and

“PROOF: Parallel Processing”.

1.3 Conventions Used in This Book

We tried to follow a style convention for the sake of clarity. The styles in used are described below.

To show source code in scripts or source files:

{ cout << " Hello" << endl;

float x = 3.;

float y = 5.;

int i = 101;

cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;

}

To show the ROOT command line, we show the ROOT prompt without numbers. In the interactive system, the ROOT
 prompt has a line number (root[12]); for the sake of simplicity, the line numbers are left off.

root[] TLine l
 root[] l.Print()

TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for examplegDirectory.

When a variable term is used, it is shown between angled brackets. In the example below the variable term <library>

can be replaced with any library in the$ROOTSYSdirectory: $ROOTSYS/<library>/inc.

1.4 The Framework

ROOT is an object-oriented framework aimed at solving the data analysis challenges of high-energy physics. There are
 two key words in this definition, object oriented and framework. First, we explain what we mean by a framework and
 then why it is an object-oriented framework.

1.4.1 What Is a Framework?

Programming inside a framework is a little like living in a city. Plumbing, electricity, telephone, and transportation are
 services provided by the city. In your house, you have interfaces to the services such as light switches, electrical outlets,
 and telephones. The details, for example, the routing algorithm of the phone switching system, are transparent to you
 as the user. You do not care; you are only interested in using the phone to communicate with your collaborators to
 solve your domain specific problems.

Programming outside of a framework may be compared to living in the country. In order to have transportation and
water, you will have to build a road and dig a well. To have services like telephone and electricity you will need to
route the wires to your home. In addition, you cannot build some things yourself. For example, you cannot build a
commercial airport on your patch of land. From a global perspective, it would make no sense for everyone to build his
or her own airport. You see you will be very busy building the infrastructure (or framework) before you can use the
phone to communicate with your collaborators and have a drink of water at the same time. In software engineering,
it is much the same way. In a framework, the basic utilities and services, such as I/O and graphics, are provided.

(25)1.5. INSTALLING ROOT 25
 In addition, ROOT being a HEP analysis framework, it provides a large selection of HEP specific utilities such as
 histograms and fitting. The drawback of a framework is that you are constrained to it, as you are constraint to use the
 routing algorithm provided by your telephone service. You also have to learn the framework interfaces, which in this
 analogy is the same as learning how to use a telephone.

If you are interested in doing physics, a good HEP framework will save you much work. Next is a list of the more
 commonly used components of ROOT: Command Line Interpreter, Histograms and Fitting, Writing a Graphical User
 Interface, 2D Graphics, Input/Output , Collection Classes, Script Processor.

There are also less commonly used components, as: 3D Graphics, Parallel Processing (PROOF), Run Time Type
 Identification (RTTI), Socket and Network Communication, Threads.

1.4.1.1 Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

• Less code to write - the programmer should be able to use and reuse the majority of the existing code. Basic
 functionality, such as fitting and histogramming are implemented and ready to use and customize.

• More reliable and robust code - the code inherited from a framework has already been tested and integrated with
 the rest of the framework.

• More consistent and modular code - the code reuse provides consistency and common capabilities between
 programs, no matter who writes them. Frameworks make it easier to break programs into smaller pieces.

• More focus on areas of expertise - users can concentrate on their particular problem domain. They do not have to
 be experts at writing user interfaces, graphics, or networking to use the frameworks that provide those services.

1.4.2 Why Object-Oriented?

Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented Programming:

• Encapsulation enforces data abstraction and increases opportunity for reuse.

• Sub classing and inheritance make it possible to extend and modify objects.

• Class hierarchies and containment containment hierarchies provide a flexible mechanism for modeling real-world
 objects and the relationships among them.

• Complexity is reduced because there is little growth of the global state, the state is contained within each object,
 rather than scattered through the program in the form of global variables.

• Objects may come and go, but the basic structure of the program remains relatively static, increases opportunity
 for reuse of design.

1.5 Installing ROOT

To install ROOT you will need to go to the ROOT website at: http://root.cern.ch/root/Availability.html. You have
 a choice to download the binaries or the source. The source is quicker to transfer since it is only ~22 MB, but you
 will need to compile and link it. The binaries compiled with no degug information range from ~35 MB to ~45 MB
 depending on the target platform.

The installation and building of ROOT is described in Appendix A: Install and Build ROOT. You can download the
 binaries, or the source. The GNU g++ compiler on most UNIX platforms can compile ROOT.

Before downloading a binary version make sure your machine contains the right run-time environment. In most cases it
 is not possible to run a version compiled with, e.g., gcc4.0 on a platform where only gcc 3.2 is installed. In such cases
 you’ll have to install ROOT from source.

ROOT is currently running on the following platforms: supported platforms

• GNU/Linux x86-32 (IA32) and x86-64 (AMD64)(GCC,Intel/icc, Portland/PGCC,KAI/KCC)

• Intel Itanium (IA64) GNU/Linux (GCC, Intel/ecc, SGI/CC)

(26)• FreeBSD and OpenBSD (GCC)

• GNU/Hurd (GCC)

• HP HP-UX 10.x (IA32) and 11 (IA64) (HP CC, aCC, GCC)

• IBM AIX 4.1 (xlC compiler, GCC)

• Sun Solaris for SPARC (SUN C++ compiler, GCC)

• Sun Solaris for x86 (SUN C++ compiler, KAI/KCC)

• Compaq Alpha (GCC, KAI/KCC, DEC/CXX)

• SGI Irix 32 and 64 bits (GCC, KAI/KCC, SGI C++ compiler)

• Windows >= 95 (Microsoft Visual C++ compiler, Cygwin/GCC)

• MacOS X PPC, x86-32, x86-64 (GCC, Intel/ICC, IBM/xl)

• PowerPC with GNU/Linux and GCC, Debian v2

• PowerPC64 with GNU/Linux and GCC

• ARM with GNU/Linux and GCC

• LynxOS

1.6 The Organization of the ROOT Framework

Now after we know in abstract terms what the ROOT framework is, let us look at the physical directories and files
 that come with the ROOT installation. You may work on a platform where your system administrator has already
 installed ROOT. You will need to follow the specific development environment for your setup and you may not have
 write access to the directories. In any case, you will need an environment variable calledROOTSYS, which holds the
 path of the top ROOT directory.

> echo $ROOTSYS
 /opt/root

In theROOTSYS directory are examples, executables, tutorials, header tutorials files, and, if you opted to download
 it, the source is here. The directories of special interest to us arebin,tutorials,lib,test, andinclude. The next
 figure shows the contents of these directories.

1.6.1 $ROOTSYS/bin

Thebindirectory contains several executables.

root shows the ROOT splash screen and callsroot.exe

root.exe the executable thatrootcalls, if you use a debugger such asgdb, you will need to run
 root.exedirectly CINTdebugger

rootcint is the utility ROOT uses to create a class dictionary for CINT

rmkdepend a modified version of makedepend that is used by the ROOT build system

root-config a script returning the needed compile flags and libraries for projects that compile and
 link with ROOT

cint the C++ interpreter executable that is independent of ROOT

makecint the pure CINT version of rootcint, used to generate a dictionary; It is used by some of
 CINT install scripts to generate dictionaries for external system libraries

proofd a small daemon used to authenticate a user of ROOT parallel processing capability
 (PROOF)

proofserv the actual PROOF process, which is started byproofdafter a user, has successfully
 been authenticated

rootd is the daemon for remote ROOT file access (see theTNetFile)

(27)1.6. THE ORGANIZATION OF THE ROOT FRAMEWORK 27

Figure 1.1: ROOT framework directories

(28)
1.6.2 $ROOTSYS/lib

There are several ways to use ROOT, one way is to run the executable by typingroot at the system prompt another
 way is to link with the ROOT libraries and make the ROOT classes available in your own program.

Here is a short description of the most relevant libraries, the ones marked with a * are only installed when the options
 specified them.

• libAsImage is the image manipulation library

• libCintis the C++ interpreter (CINT)

• libCoreis the Base classes

• libEGis the abstract event generator interface classes

• *libEGPythiais the Pythia5 event generator interface

• *libEGPythia6is the Pythia6 event generator interface

• libFitPanelcontains the GUI used for fitting

• libGedcontains the GUI used for editing the properties of histograms, graphs, etc.

• libGeomis the geometry package (with builder and painter)

• libGpadis the pad and canvas classes which depend on low level graphics

• libGrafis the 2D graphics primitives (can be used independent of libGpad)

• libGraf3dis the 3D graphics primitives

• libGuiis the GUI classes (depend on low level graphics)

• libGuiBldis the GUI designer

• libGuiHtml contains the embedded HTML browser

• libGX11is the low level graphics interface to the X11 system

• *libGX11TTFis an add-on library to libGX11 providing TrueType fonts

• libHbookis for interface ROOT - HBOOK

• libHistis the histogram classes (with accompanying painter library)

• libHtmlis the HTML documentation generation system

• libMatrixis the matrix and vector manipulation

• libMathCorecontains the core mathematics and physics vector classes

• libMathMorecontains additional functions, interfacing the GSL math library

• libMinuitis the MINUIT fitter

• libNetcontains functionality related to network transfer

• libNew is the special global new/delete, provides extra memory checking and interface for shared memory
 (optional)

• libPhysics contains the legacy physics classes (TLorentzVector, etc.)

• libPostscriptis the PostScript interface

• libProofis the parallel ROOT Facility classes

• libPythonprovides the interface to Python

• *libRFIOis the interface to CERN RFIO remote I/O system.

• *libRGLis the interface to OpenGL.

• libReflexis the runtime type database library used by CINT

(29)1.6. THE ORGANIZATION OF THE ROOT FRAMEWORK 29

• libRintis the interactive interface to ROOT (provides command prompt)

• libRIOprovides the functionality to write and read objects to and from ROOT files

• libRooFitis the RooFit fitting framework

• libRubyis the interface to Ruby

• libSpectrumprovides functionality for spectral analysis

• *libThreadis the interface to TThread classes

• libTMVAcontains the multivariate analysis toolkit

• libTreeis the TTree object container system

• libTreePlayeris the TTree drawing classes

• libTreeVieweris the graphical TTree query interface
 1.6.2.1 Library Dependencies

Figure 1.2: ROOT libraries dependencies

The libraries are designed and organized to minimize dependencies, such that you can load just enough code for the
 task at hand rather than having to load all libraries or one monolithic chunk. The core library (libCore.so) contains
 the essentials; it is a part of all ROOT applications. In the Figure 1-2 you see that libCore.so is made up of base
 classes, container classes, meta information classes, operating system specific classes, and the ZIP algorithm used for
 compression of the ROOT files.

The CINT library (libCint.so) is also needed in all ROOT applications, and even by libCore. It can be used
independently of libCore, in case you only need the C++ interpreter and not ROOT. A program referencing only
TObjectonly needs libCoreand libCint. To add the ability to read and write ROOT objects one also has to load
libRIO. As one would expect, none of that depends on graphics or the GUI.

(30)Library dependencies have different consequences; depending on whether you try to build a binary, or you just try to
 access a class that is defined in a library.

1.6.2.2 Linktime Library Dependencies

When building your own executable you will have to link against the libraries that contain the classes you use. The
 ROOT reference guide states the library a class is reference guide defined in. Almost all relevant classes can be found
 in libraries returned by root-config -glibs; the graphics libraries are retuned by root-config --libs. These
 commands are commonly used inMakefiles. Using root-configinstead of enumerating the libraries by hand allows
 you to link them in a platform independent way. Also, if ROOT library names change you will not need to change your
 Makefile.

A batch program that does not have a graphic display, which creates, fills, and saves histograms and trees, only needs
 to link the core libraries (libCore,libCint,libRIO),libHistandlibTree. If ROOT needs access to other libraries,
 it loads them dynamically. For example, if theTreeViewer is used,libTreePlayerand all libraries libTreePlayer
 depends on are loaded also. The dependent libraries are shown in the ROOT reference guide’s library dependency
 graph. The difference between reference guidelibHistandlibHistPainteris that the former needs to be explicitly
 linked and the latter will be loaded automatically at runtime when ROOT needs it, by means of the Plugin Manager.

plugin manager

In the Figure 1-2, the libraries represented by green boxes outside of the core are loaded via the plugin manager plugin
 manager or equivalent techniques, while the white ones are not. Of course, if one wants to access a plugin library
 directly, it has to be explicitly linked. An example of a plugin library islibMinuit. To create and fill histograms you
 need to linklibHist.so. If the code has a call to fit the histogram, the “fitter” will dynamically load libMinuit if it is
 not yet loaded.

1.6.2.3 Plugins: Runtime Library Dependencies for Linking

plugin manager The Plugin Manager TPluginManagerallows postponing library dependencies to runtime: a plu-
 gin library will only be loaded when it is needed. Non-plugins will need to be linked, and are thus loaded at
 start-up. Plugins are defined by a base class (e.g. TFile) that will be implemented in a plugin, a tag used to
 identify the plugin (e.g. ˆrfio: as part of the protocol string), the plugin class of which an object will be created
 (e.g. TRFIOFile), the library to be loaded (in short libRFIO.so to RFIO), and the constructor to be called (e.g.

“TRFIOFile()”). This can be specified in the.rootrcwhich already contains many plugin definitions, or by calls to
 gROOT->GetPluginManager()->AddHandler().

1.6.2.4 Library Autoloading

When using a class in CINT, e.g. in an interpreted source file, ROOT will automatically load the library that defines
 this class. On start-up, ROOT parses all files ending on.rootmaprootmap that are in one of the$LD_LIBRARY_PATH
 (or$DYLD_LIBRARY_PATHforMacOS, or$PATHforWindows). They contain class names and the library names that the
 class depends on. After reading them, ROOT knows which classes are available, and which libraries to load for them.

WhenTSystem::Load("ALib")is called, ROOT uses this information to determine which librarieslibALib.sodepends
 on. It will load these libraries first. Otherwise, loading the requested library could cause a system (dynamic loader)
 error due to unresolved symbols.

1.6.3 $ROOTSYS/tutorials

tutorials The tutorials directory contains many example example scripts. They assume some basic knowledge of
 ROOT, and for the new user we recommend reading the chapters: “Histograms” and “Input/Output” before trying the
 examples. The more experienced user can jump to chapter “The Tutorials and Tests” to find more explicit and specific
 information about how to build and run the examples.

The$ROOTSYS/tutorials/directory include the following sub-directories:

fft: Fast Fourier Transform with the fftw package fit: Several examples illustrating minimization/fitting foam:
Random generator in multidimensional space geom: Examples of use of the geometry package (TGeo classes) gl:
Visualisation with OpenGL graphics: Basic graphicsgraphs: Use of TGraph, TGraphErrors, etc. gui: Scripts to
create Graphical User Interfacehist: Histogramingimage: Image Processingio: Input/Outputmath: Maths and
Statistics functionsmatrix: Matrices (TMatrix) examplesmlp: Neural networks with TMultiLayerPerceptronnet:
Network classes (client/server examples) physics: LorentzVectors, phase space pyroot: Python tutorials pythia:
Example with pythia6 quadp: Quadratic Programming ruby: ruby tutorialssmatrix: Matrices with a templated

(31)1.7. HOW TO FIND MORE INFORMATION 31
 packagespectrum: Peak finder, background, deconvolutionssplot: Example of theTSplotclass (signal/background
 estimator)sql: Interfaces to SQL (mysql, oracle, etc)thread: Using Threadstmva: Examples of the MultiVariate
 Analysis classestree: Creating Trees, Playing with Treesunuran: Interface with the unuram random generator library
 xml: Writing/Reading xml files

You can execute the scripts in$ROOTSYS/tutorials(or sub-directories) by setting your current directory in the script
 directory or from any user directory with write access. Several tutorials create new files. If you have write access to the
 tutorials directory, the new files will be created in the tutorials directory, otherwise they will be created in the user
 directory.

1.6.4 $ROOTSYS/test

The test directory contains a set of examples example that represent all areas of the framework. When a new release is
 cut, the examples in this directory are compiled and run to test the new release’s backward compatibility. The list of
 source files is described in chapter “The Tutorials and Tests”.

The$ROOTSYS/testdirectory is a gold mine of ROOT-wisdom nuggets, and we encourage you to explore and exploit
 it. We recommend the new users to read the chapter “Getting Started”. The chapter “The Tutorials and Tests” has
 instructions on how to build all the programs and it goes over the examplesEventandstress.

1.6.5 $ROOTSYS/include

Theincludedirectory contains all header files. It is especially important because the header files contain the class
 definitions.

1.6.6 $ROOTSYS/<library>

The directories we explored above are available when downloading the binaries. When downloading the source you also
 get a directory for each library with the corresponding header and source files, located in theincandsrcsubdirectories.

To see what classes are in a library, you can check the<library>/incdirectory for the list of class definitions. For
 example, the physics librarylibPhysics.socontains these class definitions:

> ls -m $ROOTSYS/math/physics/inc/

LinkDef.h, TFeldmanCousins.h, TGenPhaseSpace.h, TLorentzRotation.h,
 TLorentzVector.h, TQuaternion.h, TRobustEstimator.h, TRolke.h,
 TRotation.h, TVector2.h, TVector3.h

1.7 How to Find More Information

website The ROOT web site has up to date documentation. The ROOT source code automatically generates this
 documentation, so each class is explicitly documented on its own web page, which is always up to date with the latest
 official release of ROOT.

The ROOT Reference Guide web pages can be found at class index reference guidehttp://root.cern.ch/root/html/

ClassIndex.html. Each page contains a class description, and an explanation of each method. It shows the class
 inheritance tree and lets you jump to the parent class page by clicking on the class name. If you want more details,
 you can even see the source. There is a help page available in the little box on the upper right hand side of each class
 documentation page. You can see on the next page what a typical class documentation web page looks like. The ROOT
 web site also contains in addition to this Reference Guide, “How To’s”, a list of publications and example applications.

1.7.1 Class Reference Guide

The top of any class reference page lets you jump to different parts of the documentation. The first line links to the
class index and the index for the current module (a group of classes, often a library). The second line links to the
ROOT homepage and the class overviews. The third line links the source information - a HTML version of the source
and header file as well as the CVS (the source management system used for the ROOT development) information of
the files. The last line links the different parts of the current pages.

(32)Figure 1.3: Example of function documentation, with automatically generated LaTeX-like graphics

Figure 1.4: Inheritance tree, showing what the current class derives from, and which classes inherit from it

(33)1.7. HOW TO FIND MORE INFORMATION 33

Figure 1.5: HTML version of the source file linking all types and most functions

(34)
(35)
Chapter 2

Getting Started

We begin by showing you how to use ROOT interactively. There are two examples to click through and learn how to
 use the GUI. We continue by using the command line, and explaining the coding conventions, global variables and the
 environment setup. If you have not installed ROOT, you can do so by following the instructions in the appendix, or on
 the ROOT web site: http://root.cern.ch/root/Availability.html

2.1 Setting the Environment Variables

Before you can run ROOT you need to set the environment variableROOTSYSand change your path to includeroot/bin
 and library path variables to includeroot/lib. Please note: the syntax is forbash, if you are runningtcsh you will
 have to usesetenvinstead of export.

1. Define the variable $ROOTSYS to the directory where you unpacked the ROOT:

$ export ROOTSYS=$HOME/root

2. Add ROOTSYS/bin to your PATH:

$ export PATH=$PATH:$ROOTSYS/bin
 3. Setting the Library Path

On HP-UX, before executing the interactive module, you must set the library path:

$ export SHLIB_PATH=$SHLIB_PATH:$ROOTSYS/lib

On AIX, before executing the interactive module, you must set the library path:

$ [-z "$LIBPATH"] && export LIBPATH=/lib:/usr/lib

$ export LIBPATH=$LIBPATH:$ROOTSYS/lib

On Linux, Solaris, Alpha OSF and SGI, before executing the interactive module, you must set the library path:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib

On Solaris, in case your LD_LIBRARY_PATH is empty, you should set it:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib:/usr/dt/lib

If you use theafsversion you should set (vers= version number,arch = architecture):

$ export ROOTSYS=/afs/cern.ch/sw/lcg/external/root/vers/arch/root
 If ROOT was installed in$HOME/myroot directory on a local machine, one can do:

cd $HOME/myroot

. bin/thisroot.sh // or source bin/thisroot.sh

The new $ROOTSYS/bin/thisroot.[c]sh scripts will set correctly the ROOTSYS, LD_LIBRARY_PATH or other paths
 depending on the platform and theMANPATH. To run the program just type: root.

35

(36)
2.2 Start and Quit a ROOT Session

% root

* *

* W E L C O M E to R O O T *

* *

* Version 5.34/07 26 April 2013 *

* *

* You are welcome to visit our Web site *

* http://root.cern.ch *

* *

ROOT 5.34/07 (v5-34-07@c1f030b, May 13 2013, 16:42:38 on macosx64)
 CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0]

To start ROOT you can typerootat the system prompt. This starts up CINT, the ROOT command line C/C++

interpreter, and it gives you the ROOT prompt (root[0]).

It is possible to launch ROOT with some command line options, as shown below:

% root -?

Usage: root [-l] [-b] [-n] [-q] [dir] [[file:]data.root]

[file1.C ... fileN.C]

Options:

-b : run in batch mode without graphics

-n : do not execute logon and logoff macros as specified in .rootrc
 -q : exit after processing command line macro files

-l : do not show splash screen
 -x : exit on exception

dir : if dir is a valid directory cd to it before executing
 -? : print usage

-h : print usage
 --help : print usage

-config : print ./configure options

-memstat : run with memory usage monitoring

• -b ROOT session runs in batch mode, without graphics display. This mode is useful in case one does not want to
 set the DISPLAY or cannot do it for some reason.

• -n usually, launching a ROOT session will execute a logon script and quitting will execute a logoff script. This
 option prevents the execution of these two scripts.

• it is also possible to execute a script without entering a ROOT session. One simply adds the name of the script(s)
 after the ROOT command. Be warned: after finishing the execution of the script, ROOT will normally enter a
 new session.

• -q process command line script files and exit.

For example if you would like to run a scriptmyMacro.Cin the background, redirect the output into a filemyMacro.log,
 and exit after the script execution, use the following syntax:

root -b -q myMacro.C > myMacro.log

If you need to pass a parameter to the script use:

root -b -q 'myMacro.C(3)' > myMacro.log

(37)2.3. USING THE GUI 37
 Be mindful of the quotes, i.e. if you need to pass a string as a parameter, the syntax is:

root -b -q 'myMacro.C("text")' > myMacro.log

You can build a shared library with ACLiC and then use this shared library on the command line for a quicker execution
 (i.e. the compiled speed rather than the interpreted speed). See also “CINT the C++ Interpreter”.

root -b -q myMacro.so > myMacro.log

ROOT has a powerful C/C++ interpreter giving you access to all available ROOT classes, global variables, and
 functions via the command line. By typing C++ statements at the prompt, you can create objects, call functions,
 execute scripts, etc. For example:

root[] 1+sqrt(9)

(const double)4.00000000000000000e+00

root[] for (int i = 0; i<4; i++) cout << "Hello" << i << endl
 Hello 0

Hello 1
 Hello 2
 Hello 3
 root[] .q

To exit the ROOT session, type.q.
 root[] .q

2.3 Using the GUI

The basic whiteboard on which an object is drawn in ROOT is called a canvas (defined by the classTCanvas). Every
 object in the canvas is a graphical object in the sense that you can grab it, resize it, and change some characteristics
 using the mouse. The canvas area can be divided in several sub areas, so-called pads (the classTPad). A pad is a
 canvas sub area that can contain other pads or graphical objects. At any one time, just one pad is the so-called active
 pad. Any object at the moment of drawing will be drawn in the active pad. The obvious question is: what is the
 relation between a canvas and a pad? In fact, a canvas is a pad that spans through an entire window. This is nothing
 else than the notion of inheritance. TheTPadclass is the parent of theTCanvasclass. In ROOT, most objects derive
 from a base classTObject. This class has a virtual method Draw()such as all objects are supposed to be able to be

“drawn”. If several canvases are defined, there is only one active at a time. One draws an object in the active canvas by
 using the statement:

object.Draw()

This instructs the object “object” to draw itself. If no canvas is opened, a default one (named “c1”) is created. In the
 next example, the first statement defines a function and the second one draws it. A default canvas is created since
 there was no opened one. You should see the picture as shown in the next figure.

root[] TF1 f1("func1","sin(x)/x",0,10)
 root[] f1.Draw()

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

The following components comprise the canvas window:

• Menu bar - contains main menus for global operations with files, print, clear canvas, inspect, etc.

• Tool bar - has buttons for global and drawing operations; such as arrow, ellipse, latex, pad, etc.

• Canvas - an area to draw objects.

• Status bar - displays descriptive messages about the selected object.

• Editor frame - responds dynamically and presents the user interface according to the selected object in the canvas.

(38)Figure 2.1: A canvas with drawing

2.3.1 Main Menus and Toolbar

At the top of the canvas window are File, Edit, View, Options, Inspect, Classes and Help menus.

2.3.1.1 File Menu

• New Canvas: creates a new canvas window in the current ROOT session.

• Open. . .: popup a dialog to open a file.

• Close Canvas: close the canvas window.

• Save: save the drawing of the current canvas in a format selectable from the submenu. The current canvas name
 is used as a file name for various formats such as PostScript, GIF, JPEG, C macro file, root file.

• Save As. . .: popup a dialog for saving the current canvas drawing in a new filename.

• Print: popup a dialog to print the current canvas drawing

• Quit ROOT: exit the ROOT session

 Odkazy

 	

 View

 Stáhnout nyní (PDF - 628 Stránka - 10.69 MB)

 Outline

 Getting Started

 DRAWING HISTOGRAMS 73

 3.18 3D Implicit Functions

 NEURAL NETWORKS 135 with:

 A Little C++

 CINT the C++ Interpreter

 Interacting with Graphical Objects

 Graphical Objects

 Související dokumenty

 User Interface Testing

 „The goal of the interaction design is to create a product that enables the user to achieve their objectives in the best possible way.“.. Interaction

 User’s Guide GenePix Professional 4200A

 GenePix 4200A User’s Guide, Copyright 2005 Axon Instruments / Molecular Devices Corp... Quick Overview of Hardware and

 View of Term Analysis – Improving the Quality of Learning and Application Documents in Engineering Design

 The Term List gives the user an overview of all important words used in the original file.. It is recommended to sort the Term List alphabetically and evaluate it manually to get

 Algorithms Python, CS and so on Petr Svarny, 2020

 “Graphical user interfaces make easy tasks easy, while command line interfaces make difficult tasks possible”.

 Towards establishing a score of usability evaluation

 By changing input variables, Fuzzy Usability Evaluator can be used for obtaining a usability score of any user

 User Guide

 To connect to a Wi-Fi network that has a hidden SSID, touch Add network… under the Wi-Fi network list, and then follow the onscreen instructions to enter the required information

 USER GUIDE

 The level of any source signal in the final output is affected by many factors, principally the Input Gain control, Channel Fader and Mix Faders. You should try to use only as

 NAMD User’s Guide

 Atomic positions are read differently depending on the following scenarios: (i) the file contains exactly as many records as the atoms in the group: all positions are read in

 Nahrajte své studijní materiály ke stažení všech dokumentů.

 Nahrát

 Váš dokument bude obohacen, sdílen na 9PDF CZ, aby vám pomohl při studiu.

 Související dokumenty

 JASP :GraphicalStatisticalSoftwareforCommonStatisticalDesigns JournalofStatisticalSoftware

 17

 0

 0

 Interactive Guidance and Navigation for Facilitating Image-Based 3D Modeling

 8

 0

 0

 Insert here your thesis’ task.

 80

 0

 0

 Autonomous Sensor Signal Acquisition System

 105

 0

 0

 DIPLOMA THESIS ASSIGNMENT

 52

 0

 0

 A GRAPHICAL USER INTERFACE FRAMEWORK FOR DIGITAL TELEVISION

 4

 0

 0

 High Resolution 3-D Face Modeling and Model Warping

 4

 0

 0

 Audiovisual Interface for Czech Spoken Dialogue System

 4

 0

 0

 Společnost

 	
 O nás

	
 Sitemap

 Kontakt & Pomoc

 	
 Kontaktujte Nás

	
 Feedback

 Legal

 	
 Podmínky Použití

	
 Zásady Ochrany Osobních Údajů

 Social

 	

 Linkedin

	

 Facebook

	

 Twitter

	

 Pinterest

 Získejte naše bezplatné aplikace

 	

 Školy

 Témy

 Jazyk:

 Čeština

 Copyright 9pdf.info © 2024

