• Nebyly nalezeny žádné výsledky

E XPOSURE TO LIQUID CHEMICAL WITHIN WATER

Experiments, similar to those conducted using distilled water, were also carried out using 0.1 M NaCl solution. Results of the sorption of brine on time dependence were similar to results of moisture sorption.

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

0 24 48 72 96 120 time (h)144 168 192 216 240

weight change (%)

FATRAFOL 804 STAFOL 914 PVC PVC/30B5 PVC/Na5

PVC/Na5/PEG/IDP PVC/Na/5PEG PVC/30B 3/TCP PVC/30B5/TCP PVC/30B5/IDP

PVC/Na3/DEG/TCP PVC/Na3/DEG/DCP PVC/Na3/DEG1

Fig. 30 Weight change of samples during exposing in 0.1 M NaCl solution as a function of time

Table 5 Measured and calculated values of brine (0.1 M NaCl) diffusivity and equilibrium weight gain of prepared samples and commercial membranes

system c (%)

Diffusion Coefficient x

1014 (m2/s)

cs (%)

STAFOL 914 0,41 7,04 0,52

FATRAFOL 804 0,12 916,00 0,16

FATRAFOL 803 0,08 35,54 0,16

PVC 0,09 11,83 0,19

PVC/30B5 0,45 0,57 1,80

PVC/Na5 0,86 25,02 0,89

PVC/Na5/PEG/IDP 0,81 0,22 1,90

PVC/Na5/PEG 1,62 10,73 1,67

PVC/30B 3/TCP 0,36 11,13 0,47

PVC/30B5/TCP 0,50 38,27 0,52

PVC/30B5/IDP 0,49 5,77 0,51

PVC/Na3/DEG/TCP 1,01 3,92 1,02

PVC/Na3/DEG/DCP 1,11 13,37 1,25

PVC/Na3/DEG1 1,52 19,64 1,56

When one compares the result presented in Table 4 with those given in Table 5, one notice that clay is much less effective in reducing the diffusivity of brine than distilled water, and brine is adsorbed to a much lesser extent on the clay particles. These expectations are simi-lar as in Rana’s research [35].

As further Figures 31 and 32 show, differences between percentage areal weight change and percentage weight change are minimal. It could be say that materials containing nano-filler Cloisite® 30B performed the best resistance to sorption of brine than .

-0,01

percentage areal weight change percentage areal weight change after drying

Fig. 31 Percentage areal weight change before and after drying

-0,5

percentage weight change percentage weight change after drying

Fig. 32 Percentage weight change during exposing before and after drying

CONCLUSION

Significant progress in the development of polymer/clay nanocomposites has been made over the past one and a half decades.

Clay was chosen as filler due to the its low loading range. The ability of clays to organize and direct polymer nanocomposites synthesis comes from a number of unique structural and chemical properties. From the smectite group, the best known and widely utilized clay is montmorillonite.

There are many articles with information about improving barrier properties by adding nanofilles. It is necessary to check this theory practically.

Because of this PPVC was chosen as polymer matrix. It is an example of common plastics material with good barrier properties as a pure material. In fact, the research of barrier properties of PVC/clay nanocomposites has only begun.

Nanocomposite samples with two types of fillers, namely Cloisite  Na+ and Cloisite  30B, were prepared using different amount of intercalation and co-intercalation agents.

Then, these samples were compared with commercial membranes.

In present work, barrier properties using Permeability, WVTR, Diffusion coefficient and mass changes at saturation were determined by measuring the changes in weight. It was found out that our prepared samples have significantly better barrier properties than com-mercial membranes. Generally it could be say, the addition of Cloisite 30B and subse-quent co-intercalation lead to the better barrier properties, namely permeability decreased about 23% by Water method and 70% by Desiccant method. Permeation experiments are thus preferable to sorption experiments, and these might even be used to estimate effec-tiveness of a given processing techniques to exfoliate platelets.

It could be also said, that enhancement of barrier properties was achieved using only 3wt%

of nanofiller. From comparing diffusion coefficients of some materials in different solu-tions could be found out that increasing diffusion coefficient value was corresponded with reducing mass change at saturation. This result could be explained based on the hydrophilic nature of the clay surface that tends to immobilize some of the moisture. Moreover it could be deduced that materials with 3wt% nanofiller content had lower diffusion coefficient than with 5wt%.

It is necessary to note that barrier properties depend on type of nanofiller, using intercala-tion and co-intercalaintercala-tion agents and on intercalaintercala-tion/exfoliaintercala-tion degree of nanofiller in polymer matrix.

At the end, we could suggest, that new types of materials utilized as insulation membranes were found.

REFERENCES

1. S. S. RAY and M. OKAMOTO. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science Volume 28, Issue 11 , November 2003, p. 1539-1641

2. T.J. PINNAVAIA, G.W. BEALL. Polymer-clay nanocomposites, John Wiley & Sons Ltd, 2000, p.349. ISBN 0-471-63700-9.

3. X. KORNMANN. Synthesis and Characterisation of Thermoset-Clay Nanocompo-sites. Internet site of Lulea University Sweden, Division of Polymer Engineering, 2000

4. S. C. TJONG. Structural and mechanical properties of polymer nanocomposites. Ma-terials Science and Engineering R 53 (2006), Pages 73–197

5. C. E. POWELL, G. W. BEALL. Physical properties of polymer/clay nanocomposites.

Curr Opin Solid State Mater Sci (2006), doi:10.1016/j.cossms.2006.09.001

6. M. POSPÍŠIL, et al. Structure analysis of intercalated layer silicates: combination of molecular simulations and experiment. Journal of Colloid and Interface Science Volume 277, Issue 1 , 1 September 2004, Pages 154-161.

7. M. ALEXANDRE and P. DUBOIS. Polymer-layered silicate nanocomposites: prepa-ration, properties and uses of a new class of materials. Mater Sci Eng 28 (2000), pp.

1–63

8. F. GAO. Clay/Polymer composites: the story. Materialstoday (2004).pp 50-55

9. J. BRYDSON. Plastics materials. Publisher: Elsevier, 1999. 7th ed. Chapter 12. 311-361 p. ISBN 0-7506-4132-0.

10. PVC and Vinyls by Solvin [online].

URL:<http://www.solvinpvc.com/aboutus/ourmanufacturingprocesses/0,7428,2904-2-0,00.htm#1>[cit. 2007-04-02]

11. J. MLEZIVA. Polymery - struktura, vlastnosti a použití. Sobotáles, 1993, Praha.

Chapter 5. 86-100 p. in czech. ISBN 80-901570-4-1.

12. Edited by William Andrew Publishing/Plastics Design Library, 1995. Permeability and Other Film Properties of Plastics and Elastomers. Edited by William Andrew Publishing/Plastics Design Library, 1995. Chapter 58. 706 p. ISBN 1-884207-14-06.

13. AZoM™ - Metals, Ceramics, Polymers, Composites, An Engineers Resource... [on-line]. URL:<http://www.azom.com/details.asp?ArticleID=936>[cit. 2006-11-09]

14. K12 and Other Educational Websites [online].

URL:<http://clays.org/eduresources/EduResourcesWWWLinks.html>[cit. 2006-11-09]

15. The clay mineral group [online].

URL:<http://mineral.galleries.com/minerals/silicate/clays.htm> [cit. 2005-03-12]

16. WEISS, KUŽVART. Jílové minerály – jejich struktura a využití. Praha: Karolinum, in printing.

17. Mineralogical Society of America [online].

URL: <http://www.minsocam.org/MSA/collectors_corner/arc/nomenclaturecl1.htm>

[cit. 2005-06-02]

18. Building the Phyllosilicates [online].

URL:<http://pubpages.unh.edu/~harter/crystal.htm> [cit. 2007-03-19]

19. Weathering & Clay Minerals [online].

URL:<http://www.tulane.edu/~sanelson/eens211/weathering&clayminerals.htm>

[cit. 2005-03-20]

20. Nanoclay.com [online]. URL:<http://www.nanoclay.com>[cit. 2006-09-20]

21. The University of Minnesota [online].

<http://www.soils.agri.umn.edu/academics/classes/soil2125/doc/s12chap2c.htm>

[cit.2005-02-04]

22. U.S. Department of the Interior, U.S. Geological Survey [online].

URL:<http://pubs.usgs.gov/of/of01-041/htmldocs/clay.htm>[cit. 2005-03-07]

23. Soil Smectite [online].

URL:<http://www.soils.wisc.edu/virtual_museum/soil_smectite/>[cit. 2005-03-20]

24. E&ES213: Mineralogy,Lecture March 22, Ellen Thomas - Clays and asbestos sheet silicates [online].

<URL:http:<//ethomas.web.wesleyan.edu/ees123/sheet04.htm> [cit. 2005-03-28]

25. Kalifornia Earth Minerals Corp.- About Terramin [online].

URL:<http://www.calearthminerals.com/ClayTypes.htm>[cit. 2005-03-28]

26. P. MAUL. Barrier enhancement using additives. Fillers, Pigments and Additives for Plastics in Packaging Applications,Pira International Konference, Brussels, Belgium, December 5-6, 2005

27. ALYSSA DOWNING-PERRAULT: Polymer nanocomposites are the future.

UNIVERSITY OF WISCONSIN-STOUT, MARCH 1, 2005 28. Environmental Molecular Sciences Laboratory [online].

URL:<http://www.emsl.pnl.gov/docs/eds/annual_report1999/1627b-2f.html>

[cit. 2005-06-01]

29. MOHAN et al. Mechanical and barrier properties of epoxy polymer filled with nanolayered silicite clay particles.J MATER SCI 41 (2006) 2929–2937

30. DUMONT et al. Barrier Properties of Polypropylene/Organoclay Nanocomposites.

Journal of Applied Polymer Science, Vol. 103, 618–625 (2007)

31. OSMAN et al. Poly(propylene)-Layered Silicate Nanocomposites: Gas Permeation Properties and Clay Exfoliation. Macromol. Chem. Phys. 2007, 208, 68–75

32. LAGARON et al. Structural characteristics definic high barrier properties in poly-meric materials. Materials Science and Technology, Jan 2004, vol. 20, 1, overview

33. E. PICARD et al. Barrier properties of nylon 6-montmorillonite nanocomposite mem-branes prepared by melt blending: Influence of the clay content and dispersion state Consequences on modelling. Journal of Membrane Science 292 (2007) 133–144

34. JANG-KYO KIM et al. Moisture barrier characteristics of organoclay–epoxy nano-composites. Composites Science and Technology Volume 65, Issue 5, April 2005, Pages 805-813

35. RANA et al. Measurement of Moisture Diffusivity through Layered-Silicate Nano-composites. AIChE Journal, December 2005, Vol. 51, No. 12, p. 3249-3256

36. L. N. SRIDHAR et al. Barrier Properties of Polymer Nanocomposites. Ind. Eng.

Chem. Res. 2006, 45, p. 8282-8289

37. A. SORRENTINO et al. Diffusion Behavior in Polymer–Clay Nanocomposites. Jour-nal of Polymer Science: Part B: Polymer Physics, Vol. 44, 265–274 (2006)

38. BO XU, QIANG ZHENG et al. Calculating barrier properties of polymer/ clay nanocomposites: Effects of clay layers. Polymer, Volume 47, Issue 8 , 5 April 2006, Pages 2904-2910

LIST OF USED SYMBOLS AND ABBREVIATIONS

PCN Polymer/clay nanocomposites XRD X-ray diffraction

CEC Cation exchange capacity PVC Poly(vinyl chloride) PA 6 Polyamide 6

PE Polyethylene

PET Polyethyleneterephtalate PP Polypropylene

PEO Polyethyleneoxide PS Polystyrene

UPVC Non-plasticized polyvinyl chloride PPVC Plasticized polyvinyl chloride MMT Montmorillonite

P Permeability Slope of the straight line

Saturation vapour pressure at test temperature

Relative humidity at the source and at the vapour sink Test area

Time

Water vapour transmission rate Weight change

Bm m0 m1

c m1

m2

m3 Mt M

cs

t

Change of weight

Weight of samples before measurement Weight of samples after time t

Water content

Mass of the test specimen after initial drying and before immersion Mass of the test specimen after immersion

Mass of the test specimen after initial drying and final drying Mass gain at reduced time

Maximum mass gain at the equilibrium state Water content at saturation

time of immersion of the test specimen in water or humid air

LIST OF FIGURES

Fig. 1 Polymer/clay nanocomposites ... 10

Fig. 2 Ion-exchange intercalation ... 12

Fig. 3 Ion-dipole intercalation ... 12

Fig. 4 The in-situ polymerization ... 13

Fig. 5 The melt intercalation process ... 14

Fig. 6 Si-Tetrahedron and Al-Octahedron ... 20

Fig. 7 The tetrahedral sheet ... 21

Fig. 8 The octahedral sheet ... 21

Fig. 9 The structure of 2:1 layered silicate ... 23

Fig. 10 The tortuous path migration... 26

Fig. 11 Weight decrease as a function of time ... 43

Fig. 12 Weight decrease on time dependence – materials with smaller weigh decrease than unfilled PVC compound ... 44

Fig. 13 Graphic comparison of calculated water vapour transmission rate comparison of samples ... 45

Fig. 14 Percentage comparison of mathematical WVTR to unfilled PVC compound both after 1 day and 1 month measuring ... 45

Fig. 15 Graphic permeability comparison of samples ... 46

Fig. 16 Percentage comparison of moisture permeability of tested samples to unfilled PVC compound both after 1 day and 1 month measuring ... 47

Fig. 17 Weight-gain as a function of time ... 48

Fig. 18 Comparison of permeability measured using Water and Desiccant methods ... 49

Fig. 19 Comparison of WVTR measured by Water and Desiccant methods ... 49

Fig. 20 Weight changes during swelling as a function of time ... 51

Fig. 21 FTIR spectra of octane, in which PVC samples were swelled ... 52

Fig. 22 FTIR spectra of PVC/Na3/DEG 1 during swelling ... 53

Fig. 23 FTIR spectra of PVC/30B5/IDP ... 53

Fig. 24 Weight changes of samples before and after drying ... 54

Fig. 25 Determination of water-soluble matter lost during immersion in water at 23°C ... 55

Fig. 26 Determination of water content absorbed after 192 hour immersion in water at 23°C ... 57 Fig. 27 Determination of water-soluble matter lost during immersion in water at 23°C ... 58 Fig. 28 Time dependence on water content absorbed after 2 hour immersion in

boiling water ... 59 Fig. 29 Determination of water content absorbed after 2 hour immersion in boiling

water ... 59 Fig. 30 Weight change of samples during exposing in 0.1 M NaCl solution as a

function of time ... 60 Fig. 31 Percentage areal weight change before and after drying ... 62 Fig. 32 Percentage weight change during exposing before and after drying ... 62

LIST OF TABLES

Table 1 Composition of the PVC compound used for foil production ... 34 Table 2 Some typical properties of Cloisite® 30B and Cloisite® Na+ ... 35 Table 3 Composition of PVC/clay nanocomposites ... 38 Table 4 Calculated values of moisture diffusivity and equilibrium moisture content

of prepared samples and commercial membranes ... 56 Table 5 Measured and calculated values of brine (0.1 M NaCl) diffusivity and

equilibrium weight gain of prepared samples and commercial membranes ... 61 Table 6 Calculated data of water vapour transmission method after 1 day using

Water method ... 74 Table 7 Calculated data of water vapour transmission method after 1 month using

Water Method ... 75 Table 8 Calculated data of water vapour transmission method after 1 day using

Desiccant method... 76 Table 9 Calculated data of water vapour transmission method after 1 month using

Desiccant Method ... 76 Table 10 Calculated data of solvent resistance method ... 77 Table 11 Calculated water-soluble matter lost during immersion at 23°C ... 77

APPENDIX

Table 6 Calculated data of water vapour transmission method after 1 day using Water method

system after 24 hours WVT [g/h.m2] % P [g/Pa.s.m] % PVC/Na5/DEG0.5 58,01 53,50 583,15 4,48E-10 4,29E-10 484,35 PVC/Na3/DEG0.5 3,68 1,35 -56,61 3,09E-11 1,16E-11 -59,65

PVC/Na5/DEG1 9,00 8,09 6,03 8,22E-11 7,37E-11 7,23

PVC/Na3/DEG1 7,63 5,14 -10,21 7,46E-11 5,36E-11 -2,63 PVC/Na5/DEG/DCP 4,02 0,50 -52,64 3,80E-11 5,24E-12 -50,36 PVC/Na3/DEG/DCP 1,79 0,34 -78,92 1,37E-11 3,41E-12 -82,06 PVC/Na5/DEG0,5/TCP 3,09 1,02 -63,64 3,01E-11 1,02E-11 -60,71 PVC/Na3/DEG0,5/TCP 23,45 30,10 176,08 2,73E-10 3,48E-10 256,71 PVC/Na5/DEG/TCP 3,23 1,84 -61,96 3,73E-11 2,07E-11 -51,28 PVC/Na3/DEG/TCP 2,07 1,38 -75,59 2,02E-11 1,30E-11 -73,60 PVC/Na5/DEG/IDP 33,07 22,50 289,41 3,98E-10 2,72E-10 419,40 PVC/Na3/DEG/IDP 2,04 0,23 -75,99 2,02E-11 1,98E-12 -73,64

PVC/Na5/PEG 3,24 1,22 -61,80 3,86E-11 1,37E-11 -49,58

PVC/Na5/PEG/DOP 7,83 2,26 -7,81 7,75E-11 2,53E-11 1,17 PVC/Na5/PEG/TCP 4,27 2,50 -49,71 4,23E-11 2,48E-11 -44,74 PVC/Na5/PEG/IDP 6,77 2,82 -20,27 4,98E-11 2,05E-11 -34,97

PVC/Na5 10,56 7,97 24,33 9,17E-11 6,71E-11 19,71

PVC/30B5 3,57 1,78 -58,02 3,14E-11 1,54E-11 -59,07

PVC/30B5/IDP 6,01 4,17 -29,26 5,88E-11 4,32E-11 -23,20 PVC/30B5/TCP 2,80 1,67 -67,07 2,95E-11 1,74E-11 -61,48 PVC/30B 3/TCP 2,17 1,76 -74,39 2,28E-11 1,86E-11 -70,26

PVC/IDP 2,72 1,74 -67,92 2,65E-11 1,89E-11 -65,41

PVC/TCP 5,36 3,10 -36,86 5,30E-11 3,20E-11 -30,86

FILM 902 0,96 0,19 -88,74 7,80E-12 1,37E-12 -89,82

Blood can 0,64 0,09 -92,45 2,08E-11 2,69E-12 -72,84

FATRAFOL 803 0,81 0,67 -90,41 8,44E-11 6,96E-11 10,12

STAFOL 914 0,48 0,11 -94,39 2,52E-11 3,93E-13 -67,15

PVC 8,49 6,66 0,00 7,66E-11 6,16E-11 0,00

Table 7 Calculated data of water vapour transmission method after 1 month using Water Method

system after 1 month WVT [g/h.m2] % P [g/Pa.s.m] % PVC/Na5/DEG0.5 2,67 1,76 251,91 2,04E-11 1,42E-11 206,65

PVC/Na3/DEG0.5 1,24 0,53 63,30 1,02E-11 3,86E-12 53,81

PVC/Na5/DEG1 2,02 1,76 166,48 1,83E-11 1,61E-11 175,15

PVC/Na3/DEG1 0,71 0,16 -6,04 6,81E-12 1,19E-12 2,53

PVC/Na5/DEG/DCP 0,86 0,08 13,92 8,14E-12 5,84E-13 22,57

PVC/Na3/DEG/DCP 0,89 0,08 17,94 6,74E-12 1,44E-13 1,47

PVC/Na5/DEG0,5/TCP 0,84 0,15 10,34 8,13E-12 1,47E-12 22,45 PVC/Na3/DEG0,5/TCP 0,65 0,11 -13,69 8,30E-12 2,07E-12 25,02 PVC/Na5/DEG/TCP 0,65 0,07 -14,69 7,66E-12 6,12E-13 15,43

PVC/Na3/DEG/TCP 0,67 0,07 -11,35 6,67E-12 5,16E-13 0,42

PVC/Na5/DEG/IDP 1,37 0,46 81,08 1,64E-11 5,72E-12 147,81

PVC/Na3/DEG/IDP 0,70 0,12 -7,00 6,97E-12 1,08E-12 5,04

PVC/Na5/PEG 0,54 0,09 -28,25 6,29E-12 8,04E-13 -5,23

PVC/Na5/PEG/DOP 1,35 0,89 78,22 1,22E-11 8,43E-12 83,26

PVC/Na5/PEG/TCP 0,72 0,19 -4,58 7,16E-12 1,84E-12 7,87

PVC/Na5/PEG/IDP 0,87 0,11 14,83 6,37E-12 5,81E-13 -4,07

PVC/Na5 0,81 0,29 7,37 7,25E-12 2,59E-12 9,25

PVC/30B5 0,73 0,10 -3,21 6,46E-12 8,16E-13 -2,67

PVC/30B5/IDP 0,52 0,01 -30,80 4,60E-12 8,09E-13 -30,76

PVC/30B5/TCP 0,52 0,09 -31,60 5,48E-12 9,48E-13 -17,50

PVC/30B 3/TCP 0,51 0,07 -32,46 5,31E-12 7,15E-13 -20,05

PVC/IDP 0,83 0,17 9,83 7,88E-12 2,07E-12 18,69

PVC/TCP 1,23 1,08 62,10 1,19E-11 1,07E-11 79,81

FILM 902 1,49 0,33 96,70 1,22E-11 2,78E-12 84,32

Blood can 0,47 0,05 -37,33 1,54E-11 1,74E-12 132,31

FATRAFOL 803 0,56 0,59 -25,90 5,81E-11 6,12E-11 775,89

STAFOL 914 0,43 0,17 -43,31 2,69E-11 1,07E-11 305,21

PVC 0,76 0,08 0,00 6,64E-12 1,09E-12 0,00

Table 8 Calculated data of water vapour transmission method after 1 day using Desiccant method

system after 24 hours WVT [g/h.m2] % P [g/Pa.s.m] % PVC/Na3/DEG1 0,45 0,21 73,42 3,84E-12 1,62E-12 -24,20 PVC/Na3/DEG/DCP 0,28 0,01 8,70 2,36E-12 1,28E-13 -53,52 PVC/Na3/DEG/TCP 0,25 0,05 -1,38 2,50E-12 4,18E-13 -50,67 PVC/30B5/IDP 0,15 0,05 -42,66 1,69E-12 5,48E-13 -66,65 PVC/30B5/TCP 0,16 0,06 -35,99 1,58E-12 6,03E-13 -68,77 PVC/30B 3/TCP 0,19 0,13 -25,17 1,71E-12 1,13E-12 -66,29 PVC/Na5/PEG 0,17 0,08 -33,27 1,92E-12 9,15E-13 -62,08 PVC/Na5/PEG/IDP 0,36 0,07 41,66 2,96E-12 1,50E-13 -41,72

PVC/Na5 0,43 0,10 65,27 3,67E-12 8,70E-13 -27,68

PVC/30B5 0,26 0,19 2,17 9,48E-12 6,85E-12 86,94

FILM 902 0,36 0,03 38,77 2,86E-12 1,43E-13 -43,52

Blood can 0,12 0,04 -54,91 3,76E-12 1,45E-12 -25,84

FATRAFOL 803 0,22 0,09 -13,39 1,31E-11 5,43E-12 158,03

STAFOL 914 0,26 0,02 0,64 1,22E-11 1,34E-12 139,72

PVC 0,26 0,12 0,00 5,07E-12 2,45E-12 0,00

Table 9 Calculated data of water vapour transmission method after 1 month using Desic-cant Method

system after 1 month WVT [g/h.m2] % P [g/Pa.s.m] %

PVC/Na3/DEG1 0,57 0,15 28,18 5,00E-12 1,01E-12 -42,92

PVC/Na3/DEG/DCP 0,45 0,02 1,33 3,82E-12 2,86E-13 -56,45

PVC/Na3/DEG/TCP 0,36 0,03 -18,41 3,60E-12 2,70E-13 -58,95

PVC/30B5/IDP 0,22 0,03 -49,89 2,59E-12 2,55E-13 -70,48

PVC/30B5/TCP 0,26 0,06 -42,24 2,47E-12 5,63E-13 -71,81

PVC/30B 3/TCP 0,29 0,08 -35,51 2,62E-12 5,72E-13 -70,11

PVC/Na5/PEG 0,32 0,04 -28,48 3,58E-12 4,43E-13 -59,21

PVC/Na5/PEG/IDP 0,53 0,05 17,71 4,45E-12 9,85E-13 -49,30

PVC/Na5 0,53 0,08 19,50 4,60E-12 7,02E-13 -47,52

PVC/30B5 0,20 0,03 -56,19 7,11E-12 1,08E-12 -18,95

FILM 902 0,60 0,01 33,60 4,80E-12 2,13E-13 -45,28

Blood can 0,31 0,03 -29,70 1,01E-11 9,90E-13 15,60

FATRAFOL 803 0,22 0,09 -50,12 2,31E-11 8,98E-12 162,93

STAFOL 914 0,26 0,02 -42,04 1,62E-11 1,54E-12 84,22

PVC 0,45 0,14 0,00 8,77E-12 2,92E-12 0,00

Table 10 Calculated data of solvent resistance method