• Nebyly nalezeny žádné výsledky

Konstrukční a stavebně technické řešení stavby

3 Konstrukční a stavebně technické řešení a technické vlastnosti stavby

3.1 Konstrukční a stavebně technické řešení stavby

Budova je navržena jako samostatně stojící objekt s dvěma nadzemními a jedním podzemním podlažím. Půdorys objektu má obdélníkový tvar, ze kterého vystupuje část, ve které se nachází schodiště. Půdorys 1.PP a 1.NP je částečně ustoupený směrem do objektu. 2.NP je nad tímto ustoupením vykonzolováno. Střecha je navržena jako plochá jednoplášťová s klasickým pořadím vrstev s povlakovou hydroizolací z PVC-P folie. Vnější stěny budou zatepleny kontaktním zateplovacím systémem v kombinaci s provětrávanou fasádou. Největší půdorysné rozměry jsou 9,13 x 28,85 m, výška atiky je 8,34 m.

Konstrukční výška 1.PP je 3,76 m, 1.NP je 3,84 m a 2.NP je 3,82 m.

Objekt bude založen na plošných základech – základových pasech. Základový pas je navržen o šířce 500 mm a výšce 400 mm. Nosný systém budovy je kombinovaný – převážně stěnový, doplněný o vnitřní sloupy ve 2.NP. Monolitické železobetonové stěny jsou navrženy tloušťky 200 mm a vnitřní monolitické železobetonové sloupy čtvercového průřezu 200 x 200 mm. Stropní konstrukce jsou monolitické, železobetonové. Tloušťka stropní desky nad 1.PP a 1.NP je 250 mm, nad 2.NP je tloušťka 220 mm. Schodiště je řešeno jako deskové, tříramenné. Technologicky řešeno jako monolitické, železobetonové.

Ztužení objektu je zajištěno kombinací železobetonových monolitických stěn a stropů s železobetonovými monolitickými stropními konstrukcemi.

Předběžný statický výpočet s konstrukčními schématy a schémata výkresů tvarů pro

jednotlivá podlaží jsou součástí části D.1.2 Stavebně konstrukční řešení.

6 3.2 Zemní práce

Podle ČSN 73 6133 jsou zeminy v I. a II. třídě těžitelnosti. Výkopové práce budou prováděny pomocí těžké techniky. Vytyčení stavební jámy o objektu bude provedeno oprávněným geodetem.

Nejdříve bude sejmuta ornice v tloušťce 300 mm. Ornice bude uskladněna na staveništi a bude použita na zásypy a terénní úpravy. Skrývka ornice bude provedena dozerem. Po vytýčení stavby bude vyhloubena stavební jáma pomocí rypadel. Základová spára bude ručně začištěna. Vykopaná zemina z bude z části uskladněna na staveništi pro pozdější zásypy a zbytek bude odvezen. Zásypy je nutno hutnit. Stavební jáma bude provedena jako svahovaná.

Hladina podzemní vody je pod úrovní základové spáry. Odvodnění stavební jámy bude zajištěno pomocí kalového čerpadla, které bude odvádět vodu do kanalizace.

Podrobnější návrh bude proveden v prováděcí projektové dokumentaci.

3.3 Základy

Založení objektu je navrženo na plošných základech – základových pasech z betonu C25/30 XC2 – Cl 0,2 – Dmax 16 – S3. Základové pasy budou šířky 500 mm a výšky 400 mm. Mezi pasy bude proveden hutněný štěrkový podsyp tloušťky 150 mm. Přes základové pasy bude provedena podkladní betonová deska tloušťky 100 mm. Podkladní deska bude z betonu C25/30 XC2 – Cl 0,2 – Dmax 16 – S3. Na podkladní betonovou desku bude proveden penetrační nátěr a následně hydroizolační vrstva z asfaltových pásů.

3.4 Hydroizolace

Hydroizolace spodní stavby je řešena pomocí dvou natavených asfaltových pásů Glastek 40 Special Mineral tloušťky 4 mm. Hydroizolace bude ve spodní části stavby chráněna podkladní betonovou deskou a na suterénních stěnách a soklové části pomocí desek XPS a geotextilie. Hydroizolace bude vytažena minimálně 300 mm nad terén.

Hydroizolace střechy bude provedena z hydroizolační PVC-P folie Dekplan 76 tloušťky 1,5 mm. Skladba střechy stabilizována pomocí systému mechanického kotvení.

Při aplikaci hydroizolačních pásů a folii musí být dodrženy platné technologické předpisy výrobce.

3.5 Svislé nosné konstrukce

V objektu jsou navrženy monolitické železobetonové obvodové stěny, monolitické železobetonové stěny schodišťového jádra a vnitřní monolitické železobetonové sloupy.

Stěny budou tloušťky 200 mm a sloupy průřezu 200 x 200 mm. Budou provedeny z betonu C30/37 XC3 – Cl 0,2 – Dmax 16 – S3.

Návrh železobetonových konstrukcí viz D.1.2 Stavebně konstrukční řešení.

3.6 Svislé nenosné konstrukce – příčky Zděné příčky

Ve všech podlažích budou dělící zděné příčky Porotherm 14 Profi Dryfix tloušťky 140 mm.

Ke zdění bude použita speciální pěna. Příčky budou provedeny až ke stropní konstrukci.

7

Napojení bude provedeno pružně, tak aby nedocházelo k přitížení příček při průhybu stropní konstrukce.

Sádrokartonové příčky

Ve 2.NP budou pro oddělení jednotlivých kanceláří použity sádrokartonové příčky Knauf W112.cz tloušťky 100 mm s dvojitým opláštěním deskami Knauf White na kovové podkonstrukci. Příčka je vyplněna izolací z minerální vaty. Příčky budou provedeny až ke stropní konstrukci. Napojení bude provedeno pružně, tak aby nedocházelo k přitížení příček při průhybu stropní konstrukce.

Prosklené příčky

V 1.NP a 2.NP budou u recepce a zasedací místnosti použity prosklené příčky Liko-S Micra II tloušťky 100 mm. Jedná se o dvojitě zasklené bezrámové příčky. Příčky budou provedeny až ke stropní konstrukci, napojení bude provedeno pružně, tak aby nedocházelo přitížení příček při průhybu stropní konstrukce. Přesný tvar a provedení bude řešeno v prováděcí dokumentaci příček.

Sanitární příčky

U hygienických zařízení budou sanitární příčky Alsanit Solari tloušťky 28 mm. Příčka je tvořena dřevotřískovou deskou s hliníkovým rámem. Celková výška je 2010 mm, výška spáry od podlahy je 150 mm.

Veškeré práce je nutné provést v souladu s platnými technologickými předpisy výrobců.

3.7 Vodorovné konstrukce

Stropní desky jsou navrženy jako monolitické, železobetonové ve dvou tloušťkách.

Nad 1.PP a 1.NP je navržena deska tloušťky 250 mm. Nad 2.NP je navržený průvlak, který podporuje stropní desku. Tloušťka stropní desky nad 2.NP je 220 mm. Vodorovné nosné konstrukce budou provedeny z betonu C30/37 XC3 – Cl 0,2 – Dmax 16 – S3.

Návrh železobetonových konstrukcí viz D.1.2 Stavebně konstrukční řešení.

Na stropní desku bude zavěšen sádrokartonový podhled Knauf D116.cz s dvojitým opláštěním.

3.8 Střešní konstrukce

Střecha objektu je navržena jako plochá jednoplášťová s klasickým pořadím vrstev s povlakovou hydroizolací z hydroizolační PVC-P folie Dekplan 76. Tepelná izolace střechy bude provedena ve dvou vrstvách z tepelně izolačních desek Isover EPS 100 v celkové tloušťce 240 mm (2 x 120 mm). Pokládka bude provedena na vazbu. Parotěsná vrstva bude provedena z asfaltového pásu Glastek 40 special mineral, který bude natavený na spádovou napenetrovanou vrstvu. Spádová vrstva bude provedena z cementové pěny s polystyrenem Poriment PS. Minimální spád bude 2 %. Dilatace spádové vrstvy bude maximálně po 6 x 6 m. Nosnou konstrukci střechy tvoří železobetonová monolitická stropní deska tloušťky 220 mm. Stabilita skladby bude zajištěna systémem mechanického kotvení.

Atika bude provedena jako monolitická železobetonová do výšky 650 mm nad stropní desku.

Pro přístup na střechu pro údržbu a servis bude sloužit výlez do ploché střechy Velux CXP

o rozměrech 1000 x 1000 mm.

8

Odvodnění střechy bude zajištěno pomocí dvou vpustí Topwet DN 100.

Provedení systémů musí být v souladu s platnými technologickými předpisy výrobců.

3.9 Obvodový plášť

Obvodový plášť bude tvořen provětrávanou fasádou s fasádními deskami Cembrit a kontaktním zateplovacím systémem ETICS.

Provětrávaná fasáda se skládá ze svislého podkladního hliníkového roštu Iltegro Vario, na který jsou mechanicky upevněny vláknocementové fasádní desky Cembrit. Mezi podkladním roštem bude fasádní tepelná izolace z desek z minerální vaty Isover Fassil tloušťky 180 mm. Izolace bude mechanicky kotvena pomocí talířových hmoždinek s podkladním talířkem o průměru minimálně 90 mm. Na tepelné izolaci bude difúzně otevřená folie Dekten Fasade II. Rošt mezi obkladem a tepelnou izolací s folii vymezuje větranou vzduchovou mezeru tloušťky 60 mm.

Pro kontaktní zateplovací systém je navržena tepelná izolace z desek z minerálních vláken Isover TF tloušťky 180 mm. Izolace bude lepená mechanicky kotvená pomocí talířových hmoždinek se zátkou z minerální vlny. Vnější omítka bude řešena systémem od firmy Weber. Vrchní vrstvu bude tvořit silikátová omítka Weberpas ExtraClean Active, která díky svým vlastnostem zajišťuje dlouhodobou čistotu povrchu omítky.

Provedení systémů musí být v souladu s platnými technologickými předpisy výrobců.

3.10 Podlahy

Všechny podlahy jsou navrženy jako plovoucí, z důvodu zabránění šíření kročejového hluku. V 1.PP jsou navrženy podlahy tloušťky 180 mm s různými nášlapnými vrstvami, podle účelu místnosti. V 1.NP a 2.NP jsou navrženy podlahy tloušťky 100 mm s různými nášlapnými vrstvami, podle účelu místnosti. Skladby podlah jsou uvedeny v dokumentu D.1.1.2 Výpis skladeb.

Na rozhraní jednotlivých nášlapných vrstev budou v úrovni podlahy osazeny přechodové prvky. V prostoru zádveří je navržena čistící zóna.

3.11 Výplně otvorů

Pro výplně otvorů v obvodovém plášti jsou navržena hliníková okna Schüco AWS 75.SI+ v šedé barvě a s izolačním trojsklem.

Vnější parapety budou hliníkové v tmavě šedé barvě. Vnitřní parapety budou plastové bílé barvy.

Vstupní dveře jsou navrženy jako dveřní systém Schüco ADS 90 PL.SI v šedé barvě.

Vstupní dveře do výrobní části budou mít panikové kování. Dveře oddělující zádveří a vstupní halu jsou navrženy jako dveřní systém Schüco ADS 65.NI.

V 1.PP a 1.NP budou dveře s ocelovou zárubní. Ve 2.NP budou použity obložkové zárubně.

Garážová vrata do expedičního skladu v 1.NP budou od firmy Hörmann.

Dveře v místnostech S04 a 211 budou s větracími otvory ve spodní a horní části. Tyto

místnosti nebudou větrány pomocí vzduchotechniky.

9

V 1.PP je nad dveřmi D16 navržen keramický plochý překlady Porotherm KP 14,5, délky 1750 mm. V 1.NP je nad dveřmi D08 navržen keramický plochý překlady Porotherm KP 14,5, délky 2000 mm. V 2.NP jsou nad všemi dveřními otvory v příčkách z bloků Porotherm 14 Profi Dryfix tloušťky 140 mm navrženy keramické ploché překlady Porotherm KP 14,5, délky 1250 mm.

3.12 Klempířské výrobky

Na atice bude použita atiková závětrná lišta Viplanyl z poplastovaného plechu, rozvinuté šířka 250 mm a vnější roh Viplanyl z poplastovaného plechu, rozvinuté šířky 100 mm.

Vnější parapety budou hliníkové tloušťky 1,4 mm v tmavě šedé barvě.

3.13 Zámečnické výrobky

Na schodišti bude po obou stranách na schodišťových stěnách hliníková madla ve výšce 1 m nad úrovní podlahy. Ve 2.NP bude v prostoru schodiště na volném konci stropní desky hliníkové zábradlí výšky 1 m nad úrovní podlahy.

3.14 Povrchové úpravy

Vnější omítka na kontaktním zateplovacím systému bude silikátová Weber ExtraClean Active šedé barvy. Vnitřní omítky budou štukové Weber Štuk Uni s provedenou malbou bílé barvy.

Na sádrokartonové příčky se provede celoplošné tmelení finální tmelící hmotou Uniflott Finish. Strop bude tvořit sádrokartonový podhled s provedenou malbou bílé barvy.

3.15 Obklady

Na hygienických zařízeních budou provedeny keramické obklady do výšky 2000 mm. U kuchyňky bude proveden obklad ve výšce 900 mm od podlahy a bude výšky 500 mm.

3.16 Tepelná a akustická izolace Tepelná izolace

Pro tepelnou izolaci obvodového pláště v nadzemních podlažích jsou pro kontaktní zateplovací systém navrženy desky z minerálních vláken Isover TF a pro provětrávanou fasádu desky z minerálních vláken Isover Fassil. Na tepelnou izolaci suterénních stěn a soklové části jsou navrženy desky XPS Isover Styrodur 2800 C.

Pro tepelnou izolace podlah na zemině v 1.PP jsou navrženy desky z pěnového polystyrenu Isover EPS 100.

Pro tepelnou izolaci střechy jsou navrženy desky z pěnového polystyrenu Isover EPS 100.

Jednotlivé skladby jsou uvedeny a specifikovány v dokumentu D.1.1.2 Výpis skladeb.

Akustická izolace

Pro akustickou izolaci podlah v 1.NP a 2.NP jsou navrženy desky z pěnového polystyrenu

Isover Rigifloor 4000.

10

Pro akustickou izolaci v sádrokartonových příčkách jsou navrženy desky z minerálních vláken Isover Multiplat 35.

3.17 Schodiště

Schodiště je deskové tříramenné železobetonové, technologicky navrženo jako monolitické, ramena budou prováděna včetně betonových stupňů. Nástupní a výstupní ramena jsou zalomené desky uložené mezi příčnou stěnu a stropní desky. Do stěny jsou ramena uložena pomocí izolačních boxů Halfen HBB-T a spojení se stropní deskou je provedeno pomocí izolačního prvku Halfen HTT. Ramena jsou od podélných stěn oddilatována pomocí spárových desek Halfen HTPL. Střední rameno je monoliticky spojeno s se zalomeným výstupním a nástupním ramenem a od podélných stěn je oddilatováno pomocí spárových desek Halfen HTPL.

3.18 Výtah

Výtah je navržen od výrobce Schindler typ 3300. Nosnost je 1000 kg. Rozměry kabiny jsou 1600 x 1400 x 2139 mm. Úroveň základové spáry pod výtahovou šachtou je snížena podle požadavku výtahu na spodní dojezd. Horní dojezd se vejde do konstrukční výšky posledního podlaží.

3.19 Instalační šachty a předstěny

V objektu jsou navrženy instalační šachty pro vedení rozvodů TZB. V objektu se nachází jedna hlavní instalační šachta větších rozměrů. Tato šachta bude sloužit pro vedení potrubí vzduchotechniky, kanalizačního potrubí a rozvodů vody. Instalační šachta bude osazena revizními dvířky pod obklad o rozměrech 500 x 800 mm. V 1.NP budou revizní dvířka voděodolná.

Dále se v objektu nachází vnitřní dešťové svody, které budou opláštěny sádrokartonovými šachtovými stěnami Knauf W628.cz.

V hygienických zařízeních jsou navrženy instalační předsazené stěny Knauf W625.cz tloušťky 100 a 150 mm opláštěné deskami Knauf Green.

3.20 Podhledy

Na chodbě, hygienických zařízeních a v archivech v 1.PP jsou navrženy sádrokartonové zavěšené podhledy Knauf W116.cz s dvojitým opláštěním o tloušťce 95 mm s vzduchovou mezerou tloušťky 395 mm.

Ve všech místnostech v 1.NP kromě schodiště a výtahové šachty jsou navrženy sádrokartonové zavěšené podhledy Knauf W116.cz s dvojitým opláštěním o tloušťce 95 mm s vzduchovou mezerou tloušťky 395 mm.

Ve všech místnostech v 2.NP kromě schodiště a výtahové šachty jsou navrženy sádrokartonové zavěšené podhledy Knauf W116.cz s dvojitým opláštěním o tloušťce 95 mm s vzduchovou mezerou tloušťky 405 mm.

V podhledu bude vedeno potrubí vzduchotechniky pro odvětrání jednotlivých místností.

11 3.21 Požárně bezpečnostní řešení

Objekt bude vybaven zařízením elektrické požární signalizace. Ve vstupní hale bude osazena ústředna elektrické požární signalizace. V objektu budou osazeny hlásiče požáru.

Požárně bezpečnostní řešení bude řešeno v samostatné části projektové dokumentace.

4 Stavební fyzika – tepelná technika, osvětlení, oslunění, akustika – hluk, vibrace – popis řešení, výpis použitých norem

4.1 Tepelná technika

Objekt je navržen v souladu s požadavky normy ČSN 73 0540-2 Tepelná ochrana budov.

Posouzení jednotlivých skladeb bylo provedeno pomocí hodnot součinitele prostupu tepla U [W/m

2

*K]. Tepelně-technické posouzení skladeb bylo provedeno programem Teplo 2017 EDU a je přiloženo k projektové dokumentaci.

Součinitele prostupu tepla jednotlivých skladeb:

S01 – Střecha plochá jednoplášťová U = 0,153 W/m

2

*K F01 – Stěna vnější – fasáda KZS U = 0,202 W/m

2

*K F02 – Stěna vnější – provětrávaná fasáda U = 0,213 W/m

2

*K

F03 – Stěna vnější – sokl U = 0,214 W/m

2

*K

F05 – Suterénní stěna U = 0,497 W/m

2

*K

P01 – Podlaha na terénu tl. 180 mm U = 0,507 W/m

2

*K P03 – Podlaha na stropě tl. 100 mm U = 0,819 W/m

2

*K P05 – Podlaha na stropě nad venkovním prostorem U = 0,155 W/m

2

*K

Hodnoty součinitele prostupu tepla U [W/m

2

*K] navržených skladeb vyhovují doporučeným hodnotám a blíží se hodnotám pro pasivní domy.

4.2 Osvětlení a oslunění

Osvětlení bude zajištěno pomocí oken a umělého osvětlení.

4.3 Akustika – hluk/vibrace

Objekt je navržen v souladu s požadavky normy ČSN 73 0532 Akustika – Ochrana proti hluku v budovách a posuzování akustických vlastností stavebních konstrukcí a výrobků.

Uložení schodiště je navrženo pomocí izolačních boxů a prvků Halfen.

Vzhledem k zaměření výroby se nepředpokládá, že by byla zdrojem nadměrného hluku.

Vzduchová neprůzvučnost jednotlivých dělících konstrukcí:

Příčka z bloků Porotherm 14 Profi Dryfix R´

w

= 40 dB

Železobetonová stěna tl. 200 mm R´

w

= 57 dB

Sádrokartonová příčka Knauf W112.cz tl. 100 mm R´

w

= 48 dB Prosklená příčka Liko-S – Micra II tl. 100 mm R´

w

= 42 dB

Podlaha na stropě R´

w

= 53 dB

12

Hodnoty vzduchové neprůzvučnosti navržených skladeb a konstrukcí vyhovují požadavkům na zvukovou izolaci pro administrativní a víceúčelové budovy.

5 Výpis použitých norem

ČSN 01 3420 Výkresy pozemních staveb – Kreslení výkresů stavební části

ČSN EN ISO 4157-2 Výkresy pozemních staveb – Systémy označování – Část 2: Názvy a čísla místností

ČSN 73 5305 Administrativní budovy a prostory

ČSN 73 0532 Akustika – Ochrana proti hluku v budovách a posuzování akustických vlastností stavebních konstrukcí a výrobků – Požadavky

ČSN 73 0540-2 Tepelná ochrana budov – Část 2: Požadavky ČSN 73 1901-1 Navrhování střech – Část 1: Základní ustanovení

ČSN 73 1901-3 Navrhování střech – Část 3: Střechy s povlakovými hydroizolacemi ČSN 73 4130 Schodiště a šikmé rampy – Základní požadavky

ČSN EN 1991-1-1 Eurokód 1: Zatížení konstrukcí – Část 1-1: Obecná zatížení – Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb

ČSN 73 1201 Navrhování betonových konstrukcí pozemních staveb

ČSN 73 1004 Navrhování základových konstrukcí – Stanovení požadavků pro výpočetní metody

ČSN EN 1992-1-1 ed. 2 Eurokód 2: Navrhování betonových konstrukcí – Část 1-1: Obecná pravidla a pravidla pro pozemní stavby

ČSN EN 1997-1 Eurokód 7: Navrhování geotechnických konstrukcí – Část 1: Obecná pravidla

ČSN EN 1997-2 Eurokód 7: Navrhování geotechnických konstrukcí – Část 2: Průzkum a zkoušení základové půdy

ČSN P 73 0606 Hydroizolace staveb – Povlakové hydroizolace – Základní ustanovení Vyhláška č. 499/2006 Sb. o dokumentaci staveb

Vyhláška č. 398/2009 Sb. o obecných technických požadavcích zabezpečujících bezbariérové užívání staveb

V Příkrakově 05/2021 Vypracoval: Vít Kekula

GSEducationalVersion

DRUH PRÁCE:

VEDOUCÍ:

VYPRACOVAL:

ŠKOLNÍ ROK:

NÁZEV STAVBY:

BAKALÁŘSKÁ PRÁCE

KATEDRA:

Ing. Lenka Hanzalová, Ph.D.

K124 - KATEDRA POZEMNÍCH STAVEB Vít Kekula

2020/2021

ADMINISTRATIVNĚ VÝROBNÍ BUDOVA V CHRUDIMI

OBSAH:

D.1.1 - ARCHITEKTONICKO-STAVEBNÍ ŘEŠENÍ

ČÁST: STUPEŇ PD:

DATUM:

VÝPIS SKLADEB

DSP 05/2021

MĚŘÍTKO: Č. PŘÍLOHY:

D.1.1.2

-GSEducationalVersion

- DEKPLAN 76, mechanicky kotvená PVC-P folie,

hydroizolační vrstva tl. 1,5 mm

- FILTEK V, sklovláknitá netkaná textilie, separační vrstva

-- ISOVER EPS 100 -- mechanicky kotvená tepelná izolace, tl. 240 mm tepelněizolační vrstva (pokládka na vazbu) (2x 120 mm) - GLASTEK 40 SPECIAL MINERAL - modifikovaný asfaltový pás,

parotěsná vrstva tl. 4 mm

- DEKPRIMER, asfaltový penetrační nátěr, penetrační vrstva

-- PORIMENT PS -- cementová pěna s polystyrenem, tl. min 40 mm spádová a izolační vrstva (dilatace po max. 6 x 6 m) tl. max 230 mm

- ŽELEZOBETONOVÁ DESKA, nosná vrstva tl. 220 mm

- VZDUCHOVÁ INSTALAČNÍ MEZERA tl. 405 mm

- ZAVĚŠENÝ PODHLED KNAUF D116.cz s dvojitým opláštěním tl. 95 mm

S1 - Střecha plochá jednoplášťová

SHRNUTÍ VLASTNOSTÍ HODNOCENÝCH KONSTRUKCÍ

Teplo 2017 EDU tepelná ochrana budov (ČSN 730540, EN ISO 6946, EN ISO 13788)

Název kce Typ R [m2K/W] U [W/m2K] Ma,max[kg/m2] Odpaření DeltaT10 [C]

S01 - Střecha plochá j... střecha 6.387 0.153 0.0036 ano ---

Název konstrukce: S01 - Střecha plochá jednoplášťová Vysvětlivky:

R tepelný odpor konstrukce

U součinitel prostupu tepla konstrukce

Ma,max maximální množství zkond. vodní páry v konstrukci za rok DeltaT10 pokles dotykové teploty podlahové konstrukce.

KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ

KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY

podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2017 EDU

Název úlohy :

Střecha plochá jednoplášťová

Zpracovatel : Vít Kekula Zakázka : Bakalářská práce Datum : 4. 3. 2021

ZADANÁ SKLADBA A OKRAJOVÉ PODMÍNKY :

Typ hodnocené konstrukce : Střecha jednoplášťová Korekce součinitele prostupu dU : 0.013 W/m2K

Skladba konstrukce (od interiéru) :

Číslo Název D Lambda c Ro Mi Ma

[m] [W/(m.K)] [J/(kg.K)] [kg/m3] [-] [kg/m2]

1 Železobeton 0,2200 1,7400 1020,0 2500,0 32,0 0.0000 2 Polystyrenbeto 0,0400 0,1140 900,0 500,0 25,0 0.0000 3 Glastek 40 spe 0,0040 0,2100 1470,0 1200,0 29000,0 0.0000

4 EPS 100 0,2400 0,0370 1270,0 21,0 50,0 0.0000

5 DEKPLAN 76 0,0015 0,1600 960,0 1300,0 15000,0 0.0000

Poznámka: D je tloušťka vrstvy, Lambda je návrhová hodnota tepelné vodivosti vrstvy, C je měrná tepelná kapacita vrstvy, Ro je objemová hmotnost vrstvy, Mi je faktor difúzního odporu vrstvy a Ma je počáteční zabudovaná vlhkost ve vrstvě.

Číslo Kompletní název vrstvy Interní výpočet tep. vodivosti

1 Železobeton ---

2 Polystyrenbeton ---

3 Glastek 40 special mineral ---

4 EPS 100 ---

5 DEKPLAN 76 ---

Okrajové podmínky výpočtu :

Tepelný odpor při přestupu tepla v interiéru Rsi : 0.10 m2K/W dtto pro výpočet vnitřní povrchové teploty Rsi : 0.25 m2K/W Tepelný odpor při přestupu tepla v exteriéru Rse : 0.04 m2K/W dtto pro výpočet vnitřní povrchové teploty Rse : 0.04 m2K/W

Návrhová venkovní teplota Te : -13.0 C

Návrhová teplota vnitřního vzduchu Tai : 21.0 C Návrhová relativní vlhkost venkovního vzduchu RHe : 84.0 % Návrhová relativní vlhkost vnitřního vzduchu RHi : 55.0 %

Měsíc Délka [dny/hodiny] Tai [C] RHi [%] Pi [Pa] Te [C] RHe [%] Pe [Pa]

1 31 744 21.0 43.3 1076.3 -4.2 81.2 348.8 2 28 672 21.0 46.0 1143.4 -2.3 80.5 405.9 3 31 744 21.0 48.5 1205.5 1.3 79.4 532.6 4 30 720 21.0 53.1 1319.8 6.1 77.3 727.5 5 31 744 21.0 60.3 1498.8 11.2 74.2 986.5 6 30 720 21.0 65.7 1633.0 14.3 71.6 1166.4 7 31 744 21.0 68.2 1695.2 15.7 70.2 1251.5 8 31 744 21.0 67.3 1672.8 15.2 70.7 1220.6 9 30 720 21.0 60.8 1511.2 11.5 73.9 1002.3 10 31 744 21.0 54.0 1342.2 6.8 76.9 759.5 11 30 720 21.0 48.7 1210.5 1.6 79.2 542.8 12 31 744 21.0 46.2 1148.3 -2.2 80.5 409.4

Poznámka: Tai, RHi a Pi jsou prům. měsíční parametry vnitřního vzduchu (teplota, relativní vlhkost a částečný tlak vodní páry) a Te, RHe a Pe jsou prům. měsíční parametry v prostředí na vnější straně konstrukce (teplota, relativní vlhkost a částečný tlak vodní páry).

Průměrná měsíční venkovní teplota Te byla v souladu s EN ISO 13788 snížena o 2 C (orientační zohlednění výměny tepla sáláním mezi střechou a oblohou).

Pro vnitřní prostředí byla uplatněna přirážka k vnitřní relativní vlhkosti : 5.0 % Výchozí měsíc výpočtu bilance se stanovuje výpočtem podle EN ISO 13788.

Počet hodnocených let : 1

VÝSLEDKY VÝPOČTU HODNOCENÉ KONSTRUKCE :

Tepelný odpor a součinitel prostupu tepla podle EN ISO 6946:

Tepelný odpor konstrukce R : 6.387 m2K/W Součinitel prostupu tepla konstrukce U : 0.153 W/m2K

Součinitel prostupu zabudované kce U,kc : 0.17 / 0.20 / 0.25 / 0.35 W/m2K

Uvedené orientační hodnoty platí pro různou kvalitu řešení tep. mostů vyjádřenou přibližnou přirážkou podle poznámek k čl. B.9.2 v ČSN 730540-4.

Difúzní odpor a tepelně akumulační vlastnosti:

Difúzní odpor a tepelně akumulační vlastnosti: