• Nebyly nalezeny žádné výsledky

ON THE UNSYMMETRICAL TOP.

N/A
N/A
Protected

Academic year: 2022

Podíl "ON THE UNSYMMETRICAL TOP."

Copied!
8
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

By PETER FIELD of A~r~ ARBOR, Mich., U. S. A.

1. The problem of the top has an extensive literature but it is a literature of special cases, the specialization arising either in (a) the initial conditions, (b) the form of the momental ellipsoid, (c) the position of the centroid, or (d) a combination of the three. To this can be added a number of articles whose aim is to show that for general initial conditions there can not be an additional algebraic relation among the components of the angular velocity, excepting in the special cases t h a t have been solved. References to the older papers are given by St~ckel 1 and by Klein and Sommerfeld~; references to a number of more r e c e n t papers are given by Whittaker. a This paper gives a solution of a special case which is so simple t h a t it seems worthy of notice. The solution is of the type considered by N. Kowalewski. 4

2. Let /1, I~, and I s be the principal moments of inertia of the body for the lines

OX1, OY,, OZ1,

which are fixed in the body, let ( o , o , h ) be the coor- dinates of the centroid referred to the body axes, let 8, 9v, lp be Euler's angles, and let X, Y, Z be axes fixed in space. The point 0 is the fixed point, gravity is the only extraneous force, and the mass is m. F o r convenience

mg

will be represented by w in the equations of motion. I f we call w~, ~2, ws the components of the angular velocity along the body axes, Euler's equations are

1 Encyklop~lie der Mathematischen Wissenschaften, Bd. 4, S. 58I.

2 Theorie des Kreisels.

Analytical Dynamics, t h i r d Ed. p. I66.

4 Ma'thematische Ann~len, Bd. 65.

(2)

356 Peter Field.

11 oj 1 + ( I s ~ L ) co. w s = h w sin 0 cos 9 , 12 oJ~. + ([1 ~ I s ) ~ s ~ = - - h w sin 0 sin 9o,

I , ~s + (I.. - - / 1 ) ~1 ~ : = o, t h e values of oot oJ~, a n d oJ s a r e

~o 1 ---~ 0 cos ~ + ~ sin 0 sin 9o, oL, = - - 0 s i n g 0 + ~ s i n 0 c o s ~ 0 , to s = 9 o + ~ c o s O .

(i) (2) (3)

(4) (5) (6)

Y,

y,

/

X

Fig. 1

I n a d d i t i o n we h a v e t h e t w o i n t e g r a l s , o n e of w h i c h s t a t e s t h a t t h e t o t a l e n e r g y is c o n s t a n t a n d t h e o t h e r t h a t t h e p r o j e c t i o n of t h e a n g u l a r m o m e n t u m v e c t o r on t h e vertical line O Z is c o n s t a n t . T h e y m a y be w r i t t e n

I 10J~ + i]'2 0)~ "~- -~$ 0 ) ~ - - T ~ - - 2 w h cos 0 , (7) I 1 w 1 sin 0 sin 9~ + I~ oJ~ sin/9 cos 9o + I s oJ s cos/9 ---- k, (8) k a n d T being t h e n e w c o n s t a n t s .

3. F r o m (t) a n d (3) we h a v e

~-" [ L (iq - - I,) ,,,, d,,,, + ; s ( I s - - ~ s d ~ s ] , sin 0 cos 9 = h w Is d oJ s

a n d f r o m (2) a n d (3)

(3)

- - " ' [ 5 (I, - - 5 ) o~s d ~ + Is (I, - - X,) o , d o , ] sin 0 sin 9 - - h w i s d w s

S u b s t i t u t i n g t h e s e v a l u e s a n d t h e v a l u e o f cos O as g i v e n by e q u a t i o n (7) in e q u a t i o n (8) t h e r e r e s u l t s

-I'~ rr

tr I . . ) e a o d w . + I s ( I I - - I s ) o j s d o j s ] + h , o - ~ , ~ 5 , " s " l - _ .

I~,o! [ii ( i l _ i , ) , , , , do~l + r , ( r s _ i..)o,,do,, ] + h w isdwa

~ 0 ~ [ I ' - - I , ~ o ~ - - I ~ ~,~-- I ~ i ] : k.

A s e c o n d d i f f e r e n t i a l e q u a t i o n is o b t a i n e d f r o m t h e f a c t t h a t s i n s 0 cos s ~0 + sin" ~ sin s ~o + c o s s 0 = I ; i . e .

E q u a t i o n s (9) a n d

T h e y t h e n b e c o m e

a n d

co~

1.w~li~ ~7,_~ [s, (fi - - x J ~1 d o ~ + ! , (!, - - I..) ~ do, z]-" + o,1

h-" w-" I~" d--~w:, [ 4 (/1 - - 4 ) eas dws + / 3 (I1 - - Is) cos dws] s +

I l ' - - I i r -]'St:01] "~ I

4 ws h ' [ " - - : "

(IO) may be s i m p l i f i e d by t h e s u b s t i t u t i o n . = I , (/1 - - I J o,i + / . ~ (I, - i,) og,

v = / 1 ( I , - - / 2 ) ~ + L (Is - - Is) o., ~ 3.

- - [ v : z~ (!. --zs),,,i] d . + [ , , - - Z , (Zl - - Z~)o,i] d v +

~ 20) ~ [ r (2, - - x.) - - (v + ~,)]d,,,~

27,hwI~(X,--IJd,o~,

i , [ , ~ - - i ~ ( ~ r , - - ~,) o,,]~--~J + !~ [ . - - i ~ ( r , - - i j , o i l ~ ~ +

It I0 ~ [ T (f __ is ) _ (v +

u)] s d-ww~ =

4 hS w' I: I~ I~ (I1-7- !s) d oJ~,

(9)

(IO)

(ii)

(12)

(4)

358 Peter Field.

Equations (II)

and (12) define u and v in terms of co 3 and our problem is to find such relations among the variables as will satisfy these equations.

4~. I t may be noted t h a t / l v + I ~ u is equal to I 1 - I 2 times the square of the angular momentum. Schiff I has mentioned the possibility of having a motion of such a nature t h a t the a n g u l a r m o m e n t u m is preserved and the pro- blem is also discussed by Stiickel ~ and others, i t means, of course, that t h e body must move in such a way t h a t the vector representing the torque is per- pendicular to the vector representing t h e a n g u l a r momentum.

As a first effort at obtaining a p a r t i c u l a r solutiou let us assume

I, v + I , u = Il I, Co + 111.. C1~"=,

or

- - I s

, , = - 3 - f , ~ + CoL + c, ~,,,i. (~3)

This value of v substituted in equation

(I I) grives

- - I ~ u d u + 2 C, I~oJ, u de% + -i-~l u d u - - C o l 2 d u - - C l I , m;du + 11

]

I, - - J . it u - - C o I ~ - - C , I..~o~ lio~.~doJa=2khw l,(Ii--i..)dwa. ] 9

By taking

]~' (i,

- - z_.) ( ) l "-~ -

2 1 1 / _ .

the coefficient of ~s u d oJ~ becomes zero, and by t a k i n g "

r I.(I, - - L)

k = o a n d C o = 2 / 1 1 ~ t h e equation reduces to

du = I. (2 11 - - I s ) ~3 d ~ . o r u =

/.~

(2 i1 - - i . ) ~ i + 0 ' 2

C' being the constant of integTation. The corresponding value of v is

I Proc. M o s c o w M a t h . Soc. V o l . 24.

t M a t h e m a t i s c h e A n n a l e n . Bd. 65, 67.

H e s s , M a t h e m a t i s c h e A n n a l e n Bd. 37, s t u d i e d a case w h e r e t h e p r o j e c t i o n of t h e a n g u l a r m o m e n t u m on a c e r t a i n l i n e w a s zero.

(5)

. . . ~ T s, (/, - - / . )

~ . = & ( & - - 2 6 ) 2 ~ _ c ' + - 2 I~

- .

T h e s e values of v a n d u s u b s t i t u t e d in e q u a t i o n (I2) will satisfy the equa- t i o n provided

1~=211L, T=

- - 2 h ,v I:, (I, + I: - - 5 ) ( I 1 - - & ) ( 5 - - 5 ) '

. c, 2hw I15

T h e r e is an a m b i g u i t y in sign in solving f o r T a n d (Y, b u t i f h is positive t h e sign must be as given f o r a real solution. T h e values of u a n d v which s a t i s f y equations (I I) a n d (12) are t h e r e f o r e

,, = L ( h - - L . ) ~,i +

2LI, hw , 2115hw

L - - x ~ ' v = 5 (L - - 5 ) .,~ 5 - - &

These values of u a n d v give

- - ~ .? h w ~ ~ = ~ + ~, - - 5 1

o, = I, - - 5 ~ ; + 5 - - 5 1 '

. d oJ l dw..

As dora and c - ~ are n o w d e t e r m i n e d , t h e values of sin 0 cos 9 and sin 0 sin ~ become

sin 0 cos ~ = 5 (11 - - Is) h w I s co~ co.~, sin 0 sin 9 = I t h w 5

(5--5)

~l cos" (I4) H e n c e

z, ( 5 - - & ) ~, (~s)

tan q~ = h (Il ~ 5 ) eo~

2 w h ' a n d f r o m (3) F r o m (7) c o s 0 = I - - - -

f 5 do~

t = ( L - - z . ) ~,, ~o.. = + =

- 2 h w ] 2hs,: ]

-- -2hw ~ 2hw

d CO 3 --~-

f V ~ d ~o s.

(6)

"~t~0 Peter Field.

1S-2 - hw

T h e roots of f ( i a s) ---- o are _+ j / Is - - !1 a n d --+

J / I s --I_~'

the correspond- i n g values of cos 0 are I , a n d 12

11 - - / , 12 - - I s T h e absolute value of /I

11--1.

- - is less t h a n one o n l y in case

I~> 2 L , o r I ] = 2 1 1 ~

> 4 I ~ , i . e . L > 2 L .

T h e second value of cos 0 is less t h a n one in absolute value only in case I 1 > 212. ]~ence t h e two condi~i6ns can n o t be satisfied simultaneously. W e shall assume I 2 >

2I 1

a n d i n - t h a t case f(tos)--~ o has b u t two real roots viz.

V 2hw

t~ = +-- Is--. ll

T h e r e f o r e to 2 can "become zero in t h e course of t h e m o t i o n b u t not oJ1;fa s

~ 2hw V 2hw

oscillates between + ~ - ~ i i a n d -

i2__i ~"

T h e square of t h e t o t a l a n g u l a r velocity is

o 2hwI:,

2 h w (212--Zs) and its maximum value is ( I ~ - - I s ) ( I , - 11)

6. As the m o m e n t s of i n e r t i a f o r t h e p r i n c i p a l axes are such t h a t the s u m of any two must be g r e a t e r t h a n t h e t h i r d , it is n e c e s s a r y to see t h a t this con- dition can be satisfied. This is e v i d e n t : f o r 12 > 2 / 1 a n d

I ~ 21112.

H e n c e i f I 2 does n o t differ m u c h f r o m 2 I1, t h e q u a n t i t i e s I1, I2, I s will be nearly in t h e r a t i o I : 2 : 2 a n d c a n t h e r e f o r e f o r m a t r i a n g l e .

7. The p o l h o d a l cone. F o r t h e p o l h o d a l cone

x[ .v~

( 2hw ~---- ( 2hw~=oJ](Ii--I2)

- - I 2 oJ] + I 2 - - I . /

I1

w] + 11--:.Is]

E l i m i n a t i o n of oJ~ gives t h e r e q u i r e d e q u a t i o n w h i c h is

(7)

:,:~/i (/. --/.3) -- 71, Z.~ (I s ---/i) "

a cone with its axis along O X 1.

8. The values of r and ~ . F r o m equation (I5)

~nqD I~([,Z-I.~

sec; g~ g~ = / , ( I , - - 13) to.-'., = h w L I 3 w s

( z , - -

zs)'* ,o~'

/

X

/

X,

X

F i g . 2.

2 2 2

h w I , I.~ co s I 2 (I, - Is) oJ., 2 h w ~.~

- - I s ) o ~ . I , ( I , - - Z s ) ' o ~, + o " ~ I. "

To get ~ , we notice, referring to equations (4) and (5), that

~1 ~ ~ sin # sin z , (z, - - zs) ~..

I f sin O sin ~o and sin O cos ~ are replaced by their values as given in equation (I4), the val~e of ~ is

4 6 - 30534. Acta mathernatic.a. 56. I m p r i m 6 le 15 j a n v i e r 1931.

(8)

34i2 P e t e r Field.

11 I.. I.~ h w ,,~ _ 2 h w oJ~

G = I ~ ( I . . - - & ) ~ + 1 ~ ( I / - - 5 ) " ~ 4 1 , - ' - - 5 ~ I = 9 '

~0 ~--- T + a, a being a c o n s t a n t of i n t e g r a t i o n which we s h a h i ' V e equal t o zero.

9. T h e h e r p o l h o d a l cone. R e f e r r i n g to Fig. 1, t h e vectors r e p r e s e n t i n g d, ~ and ~ have t h e directions O N , O Z a n d O Z z r e s p e c t i v e l y . I f ~o~, coy, ~ are t h e c o m p o n e n t s of co a l o n g t h e fixecl or space axes

~,

= o cos ~ + ~ sin 0 sin ~ = 0 cos q~ + ~ sin 0 sin ~ = ,o,, coy = Osin ~p - - ~ sin ~) cos ~ ---- ~ sin ~0 - - ~ sin O cos r = - - oJ.~,

~

= ~ + ~ cos 0 = ~ + ~ cos 0 =

~ .

H e n c e the e q u a t i o n s of t h e p o l h o d a l a n d t h e h e r p o l h o d a l cones are the same, only one is r e f e r r e d to t h e body a n d t h e o t h e r t o t h e space axes. F o r the her- p o l h o d a l cone we h a v e t h e r e f o r e t h e e q u a t i o n

x" 4 ( L . - - ! , ) - - y ~ I,. ( I s - - I ~ ) - - z*" I , I*. = o.

10. G e o m e t r i c a l l y the m o t i o n is r e p r e s e n t e d , by t h e r o l l i n g of a cone fixed in t h e body on a n equal cone fixed in space a n d w h o s e axis is horizontal. As cos 0 = I when oJ 3 = o this is a c o n v e n i e n t s t a r t i n g point. A t t h a t m o m e n t O Z

a n d 0 Z 1 coincide a n d the angle b e t w e e n 0 X a n d 0 X , is 2 arc t a n j / ~r~. ( K ~ Ii-i as s k e t c h e d in Fig. 2. W h e n t h e i n s t a n t a n e o u s axis is in t h e X Y plane, 0 is zero; w h e n it is in t h e X Z plane, 0 has its m a x i m u m value.

Univ. of Mich. J u l y 193o.

T

Odkazy

Související dokumenty

[r]

1. Atiyah, we showed how to apply K-theory for computing the top dimensional obstruction to the existence of r linearly independent vector fields on an

ON THE UNSYMMETRICAL TOP... On the Unsymmetrical

Since there are no more algebraic cases t h a t can be solved for perfectly general initial conditions, recent writers have sought to solve the problem for

The top heading of the left tunnel tube (viewed in the direction of excavation) will be excavated first, under the pipe canopy pre- support, up to the point where the top

Theory of evolution, creationism, Islam, Turkey, Europe, Harun Yahya, Mustafa Akyol, Nurculuk, materialism, fundamentalism, USA, Intelligent Design..

The derived equivalence for this flop was first proved by Ueda using mutations of semi- orthogonal decompositions. In this article, we give an alternative proof for the

Abstract We discuss the Adams Spectral Sequence for R -modules based on commutative localized regular quotient ring spectra over a commutative S -algebra R in the sense of