• Nebyly nalezeny žádné výsledky

Let bealinearoperatorsuchthat isboundedon Let and bethepositiveintegers( =1 ), + + = and [ ]( )= ( ) ( ) isboundedon ( ) for 1 .Thepurposeof ])statedthatthecommutator ( ) ,aclassicalresultofCoifman,RochbergandWeiss(see[ ]–[ ],[ ]–[ ]).Let betheCalderón-Zy

N/A
N/A
Protected

Academic year: 2022

Podíl "Let bealinearoperatorsuchthat isboundedon Let and bethepositiveintegers( =1 ), + + = and [ ]( )= ( ) ( ) isboundedon ( ) for 1 .Thepurposeof ])statedthatthecommutator ( ) ,aclassicalresultofCoifman,RochbergandWeiss(see[ ]–[ ],[ ]–[ ]).Let betheCalderón-Zy"

Copied!
20
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

ARCHIVUM MATHEMATICUM (BRNO) Tomus 50 (2014), 77–96

MEAN OSCILLATION AND BOUNDEDNESS OF MULTILINEAR INTEGRAL OPERATORS

WITH GENERAL KERNELS

Liu Lanzhe

Abstract. In this paper, the boundedness properties for some multilinear operators related to certain integral operators from Lebesgue spaces to Orlicz spaces are proved. The integral operators include singular integral operator with general kernel, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.

1. Introduction and results

As the development of singular integral operators, their commutators and multilinear operators have been well studied (see [3]–[7], [18]–[20]). Let T be the Calderón-Zygmund singular integral operator andb∈BMO(Rn), a classical result of Coifman, Rochberg and Weiss (see [6]) stated that the commutator [b, T](f) =T(bf)−bT(f) is bounded onLp(Rn) for 1< p <∞. The purpose of this paper is to introduce some multilinear operator associated to certain integral operators with general kernels (see [1, 10, 15]) and prove the boundedness properties of the multilinear operators from Lebesgue spaces to Orlicz spaces.

In this paper, we are going to consider some integral operators as following (see [1]).

Letl andmj be the positive integers (j = 1, . . . , l),m1+· · ·+ml=mandbj

be the functions on Rn (j= 1, . . . , l). Set, for 1≤jl, Rmj+1(bj;x, y) =bj(x)− X

|α|≤mj

1

α!Dαbj(y)(x−y)α.

Definition 1. Let T:SS0 be a linear operator such that T is bounded on L2(Rn) and has a kernelK, that is there exists a locally integrable functionK(x, y)

2010Mathematics Subject Classification: primary 42B20; secondary 42B25.

Key words and phrases: multilinear operator, singular integral operator, BMO space, Orlicz space, Littlewood-Paley operator, Marcinkiewicz operator, Bochner-Riesz operator.

Supported by the Scientific Research Fund of Hunan Provincial Education Departments (13K013).

Received November 11, 2013, revised February 2014. Editor V. Müller.

DOI: 10.5817/AM2014-2-77

(2)

onRn×Rn\ {(x, y)∈Rn×Rn :x=y} such that T(f)(x) =

Z

Rn

K(x, y)f(y)dy

for every bounded and compactly supported functionf, where Ksatisfies:

|K(x, y)| ≤C|xy|−n, Z

2|y−z|<|x−y|

(|K(x, y)−K(x, z)|+|K(y, x)−K(z, x)|)dxC ,

and there is a sequence of positive constant numbers{Ck}such that for anyk≥1, Z

2k|z−y|≤|x−y|<2k+1|z−y|

(|K(x, y)−K(x, z)|+|K(y, x)−K(z, x)|)qdy1/q

Ck(2k|z−y|)−n/q0,

where 1< q0 < 2 and 1/q+ 1/q0 = 1. The multilinear operator related to the operator T is defined by

Tb(f)(x) = Z

Rn

Ql

j=1Rmj+1(bj;x, y)

|x−y|m K(x, y)f(y)dy . Definition 2. LetF(x, y, t) define onRn×Rn×[0,+∞), we denote that

Ft(f)(x) = Z

Rn

F(x, y, t)f(y)dy and

Ftb(f)(x) = Z

Rn

Ql

j=1Rmj+1(bj;x, y)

|x−y|m F(x, y, t)f(y)dy

for every bounded and compactly supported function f. Let H be the Banach spaceH ={h:khk<∞}. For each fixedxRn, we viewFt(f)(x) andFtb(f)(x) as a mapping from [0,+∞) toH. Then, the multilinear operators related toFtis defined by

Sb(f)(x) =kFtb(f)(x)k, whereFtsatisfies:

kF(x, y, t)k ≤C|xy|−n, Z

2|y−z|<|x−y|

(kF(x, y, t)−F(x, z, t)k+kF(y, x, t)−F(z, x, t)k)dxC , and there is a sequence of positive constant numbers{Ck}such that for anyk≥1,

Z

2k|z−y|≤|x−y|<2k+1|z−y|

(kF(x, y, t)−F(x, z, t)k+kF(y, x, t)−F(z, x, t)k)qdy1/q

Ck(2k|z−y|)−n/q0,

where 1< q0<2 and 1/q+ 1/q0= 1. We also define thatS(f)(x) =kFt(f)(x)k.

(3)

Note that the classical Calderón-Zygmund singular integral operator satisfies Definition 1 (see [8, 19, 20, 22, 23]) and that Tb andSb are just the commutators of T and S with b if m = 0 (see [6, 9, 11, 19, 20]). While when m > 0, it is non-trivial generalizations of the commutators. Let T be the Calderón-Zygmund singular integral operator, a classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b, T] =T(bf)−bT f (where b ∈BMO(Rn)) is bounded onLp(Rn) for 1< p <∞, Chanillo (see [2]) proves a similar result when T is replaced by the fractional integral operator. In [9], Janson proved boundedness properties for the commutators related to the Calderón-Zygmund singular integral operators from Lebesgue spaces to Orlicz spaces. It is well known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [3]–[5], [7]). The main purpose of this paper is to prove the boundedness properties for the multilinear operators Tb and Sb from Lebesgue spaces to Orlicz spaces.

Let us introduce some notations. Throughout this paper,Qwill denote a cube of Rn with sides parallel to the axes. For any locally integrable function f, the sharp function of f is defined by

f#(x) = sup

Q3x

1

|Q|

Z

Q

|f(y)−fQ|dy , where, and in what follows, fQ = |Q|−1R

Qf(x)dx. It is well-known that (see [8, 22])

f#(x)≈sup

Q3x c∈Cinf

1

|Q|

Z

Q

|f(y)−c|dy . LetM be the Hardy-Littlewood maximal operator defined by

M(f)(x) = sup

Q3x

1

|Q|

Z

Q

|f(y)|dy .

We write thatMpf = (M(fp))1/p for 0< p <∞. For 1≤r <∞and 0< β < n, let

Mβ,r(f)(x) = sup

Q3x

1

|Q|1−rβ/n Z

Q

|f(y)|rdy 1/r

.

We say thatf belongs to BMO(Rn) iff#belongs toL(Rn) and kfkBMO= kf#kL. More generally, letρbe a non-decreasing positive function on [0,+∞) and define BMOρ(Rn) as the space of all functionsf such that

1

|Q(x, r)|

Z

Q(x,r)

|f(y)−fQ|dyCρ(r).

Forβ >0, the Lipschitz space Lipβ(Rn) is the space of functionsf such that kfkLipβ = sup

x6=y

|f(x)−f(y)|/|x−y|β <.

For f, mf denotes the distribution function of f, that is mf(t) = |{x ∈ Rn :

|f(x)|> t}|.

(4)

Letρbe a non-decreasing convex function on [0,+∞) withρ(0) = 0.ρ−1denotes the inverse function ofρ. The Orlicz spaceLρ(Rn) is defined by the set of functions f such thatR

Rnρ(λ|f(x)|)dx <∞for someλ >0. The Luxemburg norm is given by (see [21])

kfkLρ = inf

λ>0λ−1 1 +

Z

Rn

ρ(λ|f(x)|)dx . We shall prove the following theorems in Section 2.

Theorem 1. Let0< β≤1,q0< p < n/lβandϕ,ψbe two non-decreasing positive functions on [0,+∞) withl)−1(t) = t1/pϕl(t−1/n). Suppose that ψ is convex, ψ(0) = 0,ψ(2t)Cψ(t). Let T be the same as in Definition 1 and the sequence {klCk} ∈l1. ThenTb is bounded from Lp(Rn) to Lψl(Rn) if Dαbj ∈BMO(Rn) for all αwith|α|=mj andj= 1, . . . , l.

Theorem 2. Let 0< β ≤ 1, q0 < p < n/mβ and ϕ, ψ be two non-decreasing positive functions on [0,+∞) withl)−1(t) =t1/pϕl(t−1/n). Suppose that ψ is convex, ψ(0) = 0, ψ(2t)Cψ(t). Let S be the same as in Definition 2 and the sequence {Ck} ∈l1. ThenSb is bounded from Lp(Rn) toLψl(Rn)if Dαbj ∈ BMO(Rn)for allαwith |α|=mj andj = 1, . . . , l.

Remark. (a) If l = 1 and ψ−1(t) = t1/pϕ(t−1/n), then Tb and Sb are all bounded on fromLp(Rn) toLψ(Rn) under the conditions of Theorems 1 and 2.

(b) If l = 1, ϕ(t) ≡1 and ψ(t) = tp for 1< p <∞, then Tb and Sb are all bounded onLp(Rn) ifDαb∈BMOϕ(Rn) for allαwith|α|=m.

(c) If l = 1, ψ(t) = ts andϕ(t) = tn(1/p−1/s) for 1 < p < s < ∞, then, by BMOtβ(Rn) = Lipβ(Rn) (see [9, Lemma 4]), Tb and Sb are all bounded from Lp(Rn) toLs(Rn) ifDαb∈Lipn(1/p−1/s)(Rn) for all αwith|α|=m.

2. Proof of theorems We begin with the following preliminary lemmas.

Lemma 1 (see [1]). Let T and S be the the same as Definitions 1 and 2, the sequence {Ck} ∈l1. ThenT andS are bounded on Lp(Rn)for1< p <∞.

Lemma 2 (see [9]). Letρbe a non-decreasing positive function on[0,+∞) and η be an infinitely differentiable function onRn with compact support such that R

Rnη(x)dx= 1. Denote thatbt(x) =R

Rnb(xty)η(y)dy. Thenkb−btkBMOCρ(t)kbkBMOρ.

Lemma 3 (see [1]). Let0< β <1or β = 1 andρ be a non-decreasing positive function on[0,+∞). ThenkbtkLipβCt−βρ(t)kbkBMOρ.

Lemma 4 (see [1]). Suppose1≤p2 < p < p1 <∞, ρis a non-increasing func- tion onR+,Bis a linear or sublinear operator such thatmB(f)(t1/p1ρ(t))Ct−1if kfkLp1 ≤1andmB(f)(t1/p2ρ(t))Ct−1ifkfkLp2 ≤1. ThenR

0 mB(f)(t1/pρ(t))dtC if kfkLp≤(p/p1)1/p.

Lemma 5(see [2]). Suppose that0< β < n,1≤r < p < n/βand1/s= 1/p−β/n.

ThenkMβ,r(f)kLsCkfkLp.

(5)

Lemma 6 (see [5]). Let b be a function onRn and DαALq(Rn)for allαwith

|α|=m and someq > n. Then

|Rm(b;x, y)| ≤C|xy|m X

|α|=m

1

|Q(x, y)|˜ Z

Q(x,y)˜

|Dαb(z)|qdz1/q ,

whereQ˜ is the cube centered atxand having side length 5√

n|xy|.

To prove the theorems of the paper, we need the following

Key Lemma. LetT andS be the same as in Definitions 1 and 2. Suppose that Q=Q(x0, d)is a cube with suppf ⊂(2Q)c andx,x˜∈Q.

(I)If the sequence {klCk} ∈l1 andDαbj∈BMO(Rn) for allαwith|α|=mj

andj= 1, . . . , l, then

|Tb(f)(x)−Tb(f)(x0)| ≤C

l

Y

j=1

X

j|=mj

kDαjbjkBMO

Mr(f)(˜x) for any r > q0;

(II)If the sequence {Ck} ∈l1,0< β≤1andDαbj ∈Lipβ(Rn)for allαwith

|α|=mj andj= 1, . . . , l, then

|Tb(f)(x)−Tb(f)(x0)| ≤C

l

Y

j=1

X

j|=mj

kDαjbjkLipβ

Mlβ,r(f)(˜x) for any r > q0;

(III)If the sequence{klCk} ∈l1andDαbj∈BMO(Rn)for allαwith|α|=mj

andj= 1, . . . , l, then

kFtb(f)(x)−Ftb(f)(x0)k ≤C

l

Y

j=1

X

j|=mj

kDαjbjkBMO

Mr(f)(˜x) for any r > q0;

(IV) If the sequence{klCk} ∈l1,0< β ≤1and Dαbj ∈Lipβ(Rn) for allα with |α|=mj andj = 1, . . . , l, then

kFtb(f)(x)−Ftb(f)(x0)k ≤C

l

Y

j=1

X

j|=mj

kDαjbjkLipβ

Mlβ,r(f)(˜x) for any r > q0.

Proof. Without loss of generality, we may assume l = 2. Let ˜Q = 5√

nQ and

˜bj(x) =bj(x)− P

|α|=m 1

α!(Dαbj)Q˜xα, thenRm(bj;x, y) =Rmbj;x, y) andDα˜bj=

(6)

Dαbj−(Dαbj)Q˜ for|α|=mj. We write, for suppf ⊂(2Q)c andx,x˜∈Q,

Tb(f)(x)−Tb(f)(x0) = Z

Rn

K(x, y)

|x−y|mK(x0, y)

|x0y|m Y2

j=1

Rmjbj;x, y)f(y)dy

+ Z

Rn

Rm1b1;x, y)Rm1b1;x0, y)Rm2b2;x, y)

|x0y|m K(x0, y)f(y)dy +

Z

Rn

Rm2b2;x, y)Rm2b2;x0, y)Rm1b1;x0, y)

|x0y|m K(x0, y)f(y)dy

− X

1|=m1

1 α1!

Z

Rn

hRm2b2;x, y)(xy)α1

|x−y|m K(x, y)Rm2b2;x0, y)(x0y)α1

|x0y|m K(x0, y)i

×Dα1˜b1(y)f(y)dy

− X

2|=m2

1 α2!

Z

Rn

hRm1b1;x, y)(xy)α2

|x−y|m K(x, y)Rm1b1;x0, y)(x0y)α2

|x0y|m K(x0, y)i

×Dα2˜b2(y)f(y)dy

+ X

1|=m1,2|=m2

1 α12!

Z

Rn

h(x−y)α12

|x−y|m K(x, y)−(x0y)α12

|x0y|m K(x0, y)i

×Dα1˜b1(y)Dα2˜b2(y)f(y)dy

=I1+I2+I3+I4+I5+I6.

(I).By Lemma 6 and the following inequality (see [10]), forb∈BMO(Rn),

|bQ1bQ2| ≤Clog(|Q2|/|Q1|)kbkBMO for Q1Q2, we know that, forxQandy∈2k+1Q\2kQwith k≥1,

|Rmb;x, y)| ≤C|xy|m X

|α|=m

(kDαbkBMO+|(Dαb)Q(x,y)˜ −(Dαb)Q˜|)

Ck|xy|m X

|α|=m

kDαbkBMO.

Note that|x−y| ∼ |x0y|forxQandyRn\Q, by the conditions on˜ Kand recallingr > q0, we obtain

|I1| ≤ Z

Rn\2Q

1

|x−y|m − 1

|x0y|m

|K(x, y)|

2

Y

j=1

|Rmjbj;x, y)| |f(y)|dy

+ Z

Rn\2Q

|K(x, y)−K(x0, y)| |x0y|−m

2

Y

j=1

|Rmjbj;x, y)| |f(y)|dy

(7)

X

k=1

Z

2k+1Q\2kQ

1

|x−y|m− 1

|x0y|m

|K(x, y)|

2

Y

j=1

|Rmjbj;x, y)||f(y)|dy

+

X

k=1

Z

2k+1Q\2kQ

|K(x, y)−K(x0, y)| |x0y|−m

2

Y

j=1

|Rmjbj;x, y)| |f(y)|dy

C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

X

k=1

k2 Z

2k+1Q\2kQ

|x−x0|

|x0y|n+1|f(y)|dy +C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

X

k=1

k2Z

2k+1Q\2kQ

|f(y)|q0dy1/q0

×Z

2k+1Q\2kQ

|K(x, y)−K(x0, y)|qdy1/q

C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

X

k=1

k2(2−k+Ck) 1

|2k+1Q|

Z

2k+1Q

|f(y)|rdy1/r

C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

Mr(f)(˜x). ForI2, by the formula (see [5]):

Rmb;x, y)Rmb;x0, y) = X

|γ|<m

1

γ!Rm−|γ|(Dγ˜b;x, x0)(x−y)γ and Lemma 6, we have

|Rmb;x, y)Rmb;x0, y)| ≤C X

|γ|<m

X

|α|=m

|x−x0|m−|γ||x−y||γ|kDαbkBMO,

thus

|I2| ≤C

2

Y

j=1

X

j|=mj

kDαjbjkBMOX

k=1

Z

2k+1Q\2kQ

k |x−x0|

|x0y|n+1|f(y)|dy

C

2

Y

j=1

X

j|=mj

kDαjbjkBMOX

k=1

k2−k 1

|2k+1Q|

Z

2k+1Q

|f(y)|rdy1/r

C

2

Y

j=1

X

j|=mj

DαjbjkBMO

Mr(f)(˜x). Similarly,

|I3| ≤C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

Mr(f)(˜x).

(8)

ForI4, similar to the proof ofI1andI2, taking 1< p <∞such that 1/p+1/q+1/r= 1, we get

|I4| ≤C X

1|=m1

Z

Rn\2Q

(x−y)α1

|x−y|m −(x0y)α1

|x0y|m

|K(x, y)|

× |Rm2b2;x, y)| |Dα1˜b1(y)| |f(y)|dy

+C X

1|=m1

Z

Rn\2Q

|Rm2b2;x, y)Rm2b2;x0, y)|

×|(x0y)α1K(x, y)|

|x0y|m |Dα1˜b1(y)| |f(y)|dy

+C X

1|=m1

Z

Rn\2Q

|K(x, y)−K(x0, y)|

(x0y)α1

|x0y|m

× |Rm2b2;x0, y)| |Dα1˜b1(y)| |f(y)|dy

C X

2|=m2

||Dα2b2||BMO

X

k=1

k2−k X

1|=m1

1

|2k+1Q|

Z

2k+1Q

|Dα1˜b1(y)|r0dy1/r0

× 1

|2k+1Q|

Z

2k+1Q

|f(y)|rdy1/r

+C X

2|=m2

kDα2b2kBMO

X

1|=m1

X

k=1

×kZ

2k+1Q\2kQ

|K(x, y)−K(x0, y)|qdy1/q

×Z

2k+1Q\2kQ

|Dα1˜b1(y)|pdy1/pZ

2k+1Q\2kQ

|f(y)|rdy1/r

C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

X

k=1

k2(2−k+Ck)

× 1

|2k+1Q|

Z

2k+1Q

|f(y)|rdy1/r

C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

Mr(f)(˜x).

Similarly,

|I5| ≤C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

Mr(f)(˜x).

(9)

ForI6, taking 1< r1, r2<∞such that 1/q+ 1/p+ 1/r1+ 1/r2= 1, then

|I6| ≤C X

1|=m1

2|=m2

Z

Rn\2Q

(x−y)α12K(x, y)

|x−y|m −(x0y)α12K(x0, y)

|x0y|m

× |Dα1˜b1(y)||Dα2˜b2(y)||f(y)|dy

C X

1|=m1

2|=m2

X

k=1

(2−k+Ck) 1

|2k+1Q|

Z

2k+1Q

|f(y)|rdy1/r

× 1

|2k+1Q|

Z

2k+1Q

|Dα1˜b1(y)|r1dy1/r1 1

|2k+1Q|

Z

2k+1Q

|Dα2˜b2(y)|r2dy1/r2

C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

X

k=1

k2(2−k+Ck)Mr(f)(˜x)

C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

Mr(f)(˜x). Thus

|Tb(f)(x)−Tb(f)(x0)| ≤C

2

Y

j=1

X

j|=mj

kDαjbjkBMO

Mr(f)(˜x). (II).By Lemma 6 and the following inequality, forb∈Lipβ(Rn),

|b(x)−bQ| ≤ 1

|Q|

Z

Q

kbkLipβ|x−y|βdyCkbkLipβ(|x−x0|+d)β, we get

|Rmb;x, y)| ≤C X

|α|=m

kDαbkLipβ(|x−y|+d)m+β and

|Rmb;x, y)Rmb;x0, y)| ≤C X

|α|=m

kDαbkLipβ(|x−y|+d)m+β, then

|I1| ≤

X

k=1

Z

2k+1Q\2kQ

1

|x−y|m− 1

|x0y|m

|K(x, y)|

2

Y

j=1

|Rmjbj;x, y)| |f(y)|dy

+

X

k=1

Z

2k+1Q\2kQ

|K(x, y)−K(x0, y)| |x0y|−m

2

Y

j=1

|Rmjbj;x, y)| |f(y)|dy

C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

X

k=1

Z

2k+1Q\2kQ

|x−x0|

|x0y|n+1−2β|f(y)|dy

(10)

+C

2

Y

j=1

X

j|=mj

kDαjbjkLipβX

k=1

|2k+1Q|2β/nZ

2k+1Q\2kQ

|f(y)|q0dy1/q0

×Z

2k+1Q\2kQ

|K(x, y)−K(x0, y)|qdy1/q

C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

X

k=1

(2−k+Ck) 1

|2k+1Q|1−2βr/n Z

2k+1Q

|f(y)|rdy1/r

C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

M2β,r(f)(˜x),

|I2+I3| ≤C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

X

k=1

(2−k+Ck) 1

|2k+1Q|12βr/n Z

2k+1Q

|f(y)|rdy1/r

C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

M2β,r(f)(˜x),

|I4| ≤C X

1|=m1

Z

Rn\2Q

(x−y)α1

|x−y|m −(x0y)α1

|x0y|m

|K(x, y)| |Rm2b2;x, y)|

× |Dα1˜b1(y)| |f(y)|dy

+C X

1|=m1

Z

Rn\2Q

|Rm2b2;x, y)Rm2b2;x0, y)||(x0y)α1K(x, y)|

|x0y|m

× |Dα1˜b1(y)| |f(y)|dy

+C X

1|=m1

Z

Rn\2Q

|K(x, y−K(x0, y)|

(x0y)α1

|x0y|m

|Rm2b2;x0, y)|

× |Dα1˜b1(y)| |f(y)|dy

C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

X

k=1

2−k 1

|2k+1Q|1−2β/n Z

2k+1Q

|f(y)|dy

+C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

X

k=1

|2k+1Q|2β/nZ

2k+1Q\2kQ

|f(y)|q0dy1/q0

×Z

2k+1Q\2kQ

|K(x, y)−K(x0, y)|qdy1/q

(11)

C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

X

k=1

(2−k+Ck) 1

|2k+1Q|1−2βr/n Z

2k+1Q

|f(y)|rdy1/r

C

2

Y

j=1

X

j|=mj

kDαjbjkLip

β

M2β,r(f)(˜x),

|I5| ≤C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

M2β,r(f)(˜x),

|I6| ≤C X

1|=m1,

2|=m2

Z

Rn\2Q

(x−y)α12K(x, y)

|x−y|m −(x0y)α12K(x0, y)

|x0y|m

× |Dα1˜b1(y)| |Dα2˜b2(y)| |f(y)|dy

C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

X

k=1

(2−k+Ck) 1

|2k+1Q|1−2βr/n Z

2k+1Q

|f(y)|rdy1/r

C

2

Y

j=1

X

j|=mj

kDαjbjkLip

β

M2β,r(f)(˜x).

Thus

|Tb(f)(x)−Tb(f)(x0)| ≤C

2

Y

j=1

X

j|=mj

kDαjbjkLipβ

M2β,r(f)(˜x).

A same argument as in the proof of (I) and (II) will give the proof of (III) and (VI), we omit the details.

Now we are in position to prove our theorems.

Proof of Theorem 1. Without loss of generality, we may assumel= 2. We prove the theorem in several steps. First, we prove, if Dαbj ∈BMO(Rn) for all αwith

|α|=mj andj= 1, . . . , l,

(1) (Tb(f))#C

2

Y

j=1

X

j|=mj

kDαjbjkBMO Mr(f)

for any rwithq0 < r <∞. Fix a cubeQ=Q(x0, d) and ˜xQ. Let ˜Q= 5√ nQ and ˜bj(x) = bj(x)− P

|α|=m 1

α!(Dαbj)Q˜xα, then Rm(bj;x, y) = Rmbj;x, y) and Dα˜bj=Dαbj−(Dαbj)Q˜ for|α|=mj. We write, for f1=f χQ˜ andf2=f χRn\Q˜,

(12)

Tb(f)(x) = Z

Rn

Q2

j=1Rmjbj;x, y)

|x−y|m K(x, y)f1(y)dy

− X

1|=m1

1 α1!

Z

Rn

Rm2b2;x, y)(xy)α1Dα1˜b1(y)

|x−y|m K(x, y)f1(y)dy

− X

2|=m2

1 α2!

Z

Rn

Rm1b1;x, y)(xy)α2Dα2˜b2(y)

|x−y|m K(x, y)f1(y)dy

+ X

1|=m1

2|=m2

1 α12!

Z

Rn

(x−y)α12Dα1˜b1(y)Dα2˜b2(y)

|x−y|m K(x, y)f1(y)dy

+ Z

Rn

Q2

j=1Rmj+1(bj;x, y)

|x−y|m K(x, y)f2(y)dy

=TQ2

j=1Rmjbj;x,·)

|x− ·|m f1

T X

1|=m1

1 α1!

Rm2b2;x,·)(x− ·)α1Dα1˜b1

|x− ·|m f1

T X

2|=m2

1 α2!

Rm1b1;x,·)(x− ·)α2Dα2˜b2

|x− ·|m f1

+T X

1|=m1

2|=m2

1 α12!

(x− ·)α12Dα1˜b1Dα2˜b2

|x− ·|m f1

+Tb(f2)(x),

then

|Tb(f)(x)−Tb(f2)(x0)| ≤ TQ2

j=1Rmjbj;x,·)

|x− ·|m f1

+

T X

1|=m1

1 α1!

Rm2b2;x,·)(x− ·)α1Dα1˜b1

|x− ·|m f1

+

T X

2|=m2

1 α2!

Rm1b1;x,·)(x− ·)α2Dα2˜b2

|x− ·|m f1

+

T X

1|=m1

2|=m2

1 α12!

(x− ·)α12Dα1˜b1Dα2˜b2

|x− ·|m f1

+|Tb(f2)(x)−Tb(f2)(x0)|

=L1(x) +L2(x) +L3(x) +L4(x) +L5(x)

Odkazy

Související dokumenty

Proposition 2.4 Let u and v be two tuples of trees, let x be a multivariable, and let α be a variable renaming. The multivariable A is the left-hand side and α the right-hand side...

For the rest of this paper, let A denote a K- algebra isomorphic to Mat d +1 (K) and let V denote an irreducible left A-module. It is helpful to think of these primitive idempotents

The aim of this paper is to prove Harnack’s inequality for positive solu- tions and to obtain an estimate of the H¨ older norm for the class of equations (1) that depends only on α,

On the way to solving this problem, we prove an angle distortion theorem for starlike and spirallike functions with respect to interior and boundary points... Let D be a

Maamache [15] has shown that, with the help of the appropriate time-dependent unitary transformation instead of the invariant operator, the Hamiltonian of the SU(1, 1) and SU(2)

The function p is called the symbol of the operator because p is uniquely determined by L (see, for instance, [77], p. 87, Proposition 1), that operators in the class L 0 1,0

The aim of this paper is to develop Stein’s method for exchangeable pairs (see [ 20 ] ) for a rich class of distributional approximations and thereby prove Berry-Esseen bounds for

Before stating the main theorem about the existence of canonical cut-and-projection schemes associated with the beta- integers when β is a general (non-integer) Perron number, let