• Nebyly nalezeny žádné výsledky

Kombinatorika a grafy I

N/A
N/A
Protected

Academic year: 2022

Podíl "Kombinatorika a grafy I"

Copied!
38
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

Kombinatorika a grafy I

Martin Balko

3. pˇredn´ aˇska

19. ˇr´ıjna 2021

(2)

Vytvoˇruj´ıc´ı funkce a jejich aplikace

(3)

Bin´ arn´ı zakoˇrenˇ en´e stromy

• Pˇr´ıklady bin´arn´ıch zakoˇrenˇen´ych strom˚u s≤4 vrcholy:

b1 = 1

b2 = 2 b3 = 5

b4 = 14 b0 = 1

(4)

Catalanova ˇc´ısla

• Definov´ana jako Cn= n+11 2nn

pro n ≥0.

• Hodnoty: 1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . .

• Objevil je Leonhard Euler v roce 1751.

Obr´azek:Leonhard Euler(1707–1783) aEug`ene C. Catalan (1814–1894).

Zdroj: http://en.wikipedia.org

• Je zn´amo pˇres 200 intepretac´ı: http://www-math.mit.edu/rstan/ec

(5)

Catalanova ˇc´ısla

• Definov´ana jako Cn= n+11 2nn

pro n≥0.

• Hodnoty: 1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . .

• Objevil je Leonhard Euler v roce 1751.

Obr´azek:Leonhard Euler(1707–1783) aEug`ene C. Catalan (1814–1894).

Zdroj: http://en.wikipedia.org

• Je zn´amo pˇres 200 intepretac´ı: http://www-math.mit.edu/rstan/ec

(6)

Catalanova ˇc´ısla

• Definov´ana jako Cn= n+11 2nn

pro n≥0.

• Hodnoty: 1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . .

• Objevil je Leonhard Euler v roce 1751.

Obr´azek:Leonhard Euler(1707–1783) aEug`ene C. Catalan (1814–1894).

Zdroj: http://en.wikipedia.org

• Je zn´amo pˇres 200 intepretac´ı: http://www-math.mit.edu/rstan/ec

(7)

Catalanova ˇc´ısla

• Definov´ana jako Cn= n+11 2nn

pro n≥0.

• Hodnoty: 1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . .

• Objevil jeLeonhard Euler v roce 1751.

Obr´azek: Leonhard Euler(1707–1783) aEug`ene C. Catalan (1814–1894).

Zdroj: http://en.wikipedia.org

• Je zn´amo pˇres 200 intepretac´ı: http://www-math.mit.edu/rstan/ec

(8)

Catalanova ˇc´ısla

• Definov´ana jako Cn= n+11 2nn

pro n≥0.

• Hodnoty: 1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . .

• Objevil jeLeonhard Euler v roce 1751.

Obr´azek: Leonhard Euler(1707–1783) aEug`ene C. Catalan (1814–1894).

Zdroj: http://en.wikipedia.org

• Je zn´amo pˇres 200 intepretac´ı: http://www-math.mit.edu/rstan/ec

(9)

Interpretace Catalanov´ ych ˇc´ısel I

• Plat´ıCn = poˇcet triangulac´ı (n+ 2)-gonu.

C1= 1

C2= 2

C3= 5

C4= 14

(10)

Interpretace Catalanov´ ych ˇc´ısel II

• Plat´ıCn = poˇcet spr´avn´ych uz´avorkov´an´ı s n p´ary z´avorek.

C1= 1

C2= 2

C3= 5

C4= 14

()

()() (())

()()() ()(()) (()()) (())() ((()))

()()()() (())()() ()(())() ()()(()) ()((())) (()()()) (((()))) ((()))() (()())() ()(()()) (())(()) (()(()))

((())()) ((()()))

(11)

Interpretace Catalanov´ ych ˇc´ısel III

• Plat´ıCn = poˇcet Dyckov´ych cest v (n+ 1)×(n+ 1) mˇr´ıˇzce (= schodiˇst’ pod diagon´alou).

C1 = 1

C2 = 2

C3 = 5

C4 = 14

(12)

Interpretace Catalanov´ ych ˇc´ısel IV

• Plat´ıCn = poˇcet zp˚usob˚u, jak si 2n lid´ı u stolu m˚uˇze potˇr´ast rukama, aniˇz by doˇslo ke kˇr´ıˇzen´ı.

C1 = 1

C2 = 2

C3 = 5

C4 = 14

(13)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

• Pron ∈N0 bud’ln poˇcet neuspoˇr´adan´ych rozklad˚u n na lich´e sˇc´ıtance. 3 = 3 = 1 + 1 + 1⇒l3 = 2,

4 = 3 + 1 = 1 + 1 + 1 + 1⇒l4 = 2,

5 = 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ⇒l5 = 3,

6 = 5 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 +· · ·+ 1 ⇒l6 = 4.

• Bud’ rn poˇcet neuspoˇr´adan´ych rozklad˚u n na r˚uzn´e sˇc´ıtance. 3 = 3 = 2 + 1⇒r3 = 2,

4 = 4 = 3 + 1⇒r4 = 2,

5 = 5 = 4 + 1 = 3 + 2⇒r5 = 3,

6 = 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1⇒r6 = 4, Vˇeta

Pro kaˇzd´e n∈N0 plat´ıln =rn.

• Staˇc´ı uk´azatl(x) =r(x), kde l(x)=P

n=0lnxn a r(x)=P n=0rnxn.

(14)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

• Pron ∈N0 bud’ln poˇcet neuspoˇr´adan´ych rozklad˚u n na lich´e sˇc´ıtance.

3 = 3 = 1 + 1 + 1⇒l3 = 2,

4 = 3 + 1 = 1 + 1 + 1 + 1⇒l4 = 2,

5 = 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ⇒l5 = 3,

6 = 5 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 +· · ·+ 1 ⇒l6 = 4.

• Bud’ rn poˇcet neuspoˇr´adan´ych rozklad˚u n na r˚uzn´e sˇc´ıtance. 3 = 3 = 2 + 1⇒r3 = 2,

4 = 4 = 3 + 1⇒r4 = 2,

5 = 5 = 4 + 1 = 3 + 2⇒r5 = 3,

6 = 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1⇒r6 = 4, Vˇeta

Pro kaˇzd´e n∈N0 plat´ıln =rn.

• Staˇc´ı uk´azatl(x) =r(x), kde l(x)=P

n=0lnxn a r(x)=P n=0rnxn.

(15)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

• Pron ∈N0 bud’ln poˇcet neuspoˇr´adan´ych rozklad˚u n na lich´e sˇc´ıtance.

3 = 3 = 1 + 1 + 1⇒l3 = 2,

4 = 3 + 1 = 1 + 1 + 1 + 1⇒l4 = 2,

5 = 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ⇒l5 = 3,

6 = 5 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 +· · ·+ 1 ⇒l6 = 4.

• Bud’ rn poˇcet neuspoˇr´adan´ych rozklad˚u n na r˚uzn´e sˇc´ıtance. 3 = 3 = 2 + 1⇒r3 = 2,

4 = 4 = 3 + 1⇒r4 = 2,

5 = 5 = 4 + 1 = 3 + 2⇒r5 = 3,

6 = 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1⇒r6 = 4, Vˇeta

Pro kaˇzd´e n∈N0 plat´ıln =rn.

• Staˇc´ı uk´azatl(x) =r(x), kde l(x)=P

n=0lnxn a r(x)=P n=0rnxn.

(16)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

• Pron ∈N0 bud’ln poˇcet neuspoˇr´adan´ych rozklad˚u n na lich´e sˇc´ıtance.

3 = 3 = 1 + 1 + 1⇒l3 = 2,

4 = 3 + 1 = 1 + 1 + 1 + 1⇒l4 = 2,

5 = 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ⇒l5 = 3,

6 = 5 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 +· · ·+ 1 ⇒l6 = 4.

• Bud’ rn poˇcet neuspoˇr´adan´ych rozklad˚u n na r˚uzn´e sˇc´ıtance.

3 = 3 = 2 + 1⇒r3 = 2, 4 = 4 = 3 + 1⇒r4 = 2,

5 = 5 = 4 + 1 = 3 + 2⇒r5 = 3,

6 = 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1⇒r6 = 4, Vˇeta

Pro kaˇzd´e n∈N0 plat´ıln =rn.

• Staˇc´ı uk´azatl(x) =r(x), kde l(x)=P

n=0lnxn a r(x)=P n=0rnxn.

(17)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

• Pron ∈N0 bud’ln poˇcet neuspoˇr´adan´ych rozklad˚u n na lich´e sˇc´ıtance.

3 = 3 = 1 + 1 + 1⇒l3 = 2,

4 = 3 + 1 = 1 + 1 + 1 + 1⇒l4 = 2,

5 = 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ⇒l5 = 3,

6 = 5 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 +· · ·+ 1 ⇒l6 = 4.

• Bud’ rn poˇcet neuspoˇr´adan´ych rozklad˚u n na r˚uzn´e sˇc´ıtance.

3 = 3 = 2 + 1⇒r3 = 2, 4 = 4 = 3 + 1⇒r4 = 2,

5 = 5 = 4 + 1 = 3 + 2⇒r5 = 3,

6 = 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1⇒r6 = 4,

Vˇeta

Pro kaˇzd´e n∈N0 plat´ıln =rn.

• Staˇc´ı uk´azatl(x) =r(x), kde l(x)=P

n=0lnxn a r(x)=P n=0rnxn.

(18)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

• Pron ∈N0 bud’ln poˇcet neuspoˇr´adan´ych rozklad˚u n na lich´e sˇc´ıtance.

3 = 3 = 1 + 1 + 1⇒l3 = 2,

4 = 3 + 1 = 1 + 1 + 1 + 1⇒l4 = 2,

5 = 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ⇒l5 = 3,

6 = 5 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 +· · ·+ 1 ⇒l6 = 4.

• Bud’ rn poˇcet neuspoˇr´adan´ych rozklad˚u n na r˚uzn´e sˇc´ıtance.

3 = 3 = 2 + 1⇒r3 = 2, 4 = 4 = 3 + 1⇒r4 = 2,

5 = 5 = 4 + 1 = 3 + 2⇒r5 = 3,

6 = 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1⇒r6 = 4, Vˇeta

Pro kaˇzd´e n∈N0 plat´ıln =rn.

• Staˇc´ı uk´azatl(x) =r(x), kde l(x)=P

n=0lnxn a r(x)=P n=0rnxn.

(19)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

• Pron ∈N0 bud’ln poˇcet neuspoˇr´adan´ych rozklad˚u n na lich´e sˇc´ıtance.

3 = 3 = 1 + 1 + 1⇒l3 = 2,

4 = 3 + 1 = 1 + 1 + 1 + 1⇒l4 = 2,

5 = 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ⇒l5 = 3,

6 = 5 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 +· · ·+ 1 ⇒l6 = 4.

• Bud’ rn poˇcet neuspoˇr´adan´ych rozklad˚u n na r˚uzn´e sˇc´ıtance.

3 = 3 = 2 + 1⇒r3 = 2, 4 = 4 = 3 + 1⇒r4 = 2,

5 = 5 = 4 + 1 = 3 + 2⇒r5 = 3,

6 = 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1⇒r6 = 4, Vˇeta

Pro kaˇzd´e n∈N0 plat´ıln =rn.

• Staˇc´ı uk´azatl(x) =r(x), kde l(x)=P

n=0lnxn a r(x)=P n=0rnxn.

(20)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x) = 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(21)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x) = 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(22)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x) = 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(23)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(24)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1 +x

1 · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(25)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1 +x

1 · 1 +x2

1 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(26)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1 +x

1 · 1 +x2

1 · 1 +x3

1 · 1−x8

1−x4 · · ·=r(x).

(27)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1 +x

1 ·1 +x2

1 · 1 +x3

1 · 1 +x4

1 · · ·=r(x).

(28)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(29)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(30)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(31)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(32)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(33)

Bonusov´ a aplikace: rozklady ˇc´ısel na lich´e a r˚ uzn´e ˇc´ asti

l(x)= (1 +x+x2+· · ·)(1 +x3+x6+· · ·)(1 +x5+x10+· · ·)· · ·

= 1

1−x · 1

1−x3 · 1 1−x5 · · ·

r(x)= (1 +x)(1 +x2)(1 +x3)· · ·

• Dost´av´ame rovnostl(x) = r(x), protoˇze

l(x)= 1−x2

1−x · 1−x4

1−x2 · 1−x6

1−x3 · 1−x8

1−x4 · · ·=r(x).

(34)

Pro z´ ajemce

• V´ıce se o vytvoˇruj´ıc´ıch funkc´ıch lze dozvˇedˇet napˇr´ıklad

◦ na pˇredn´aˇsceAnalytick´a kombinatorika,

◦ z kn´ıˇzky Generatingfunctionology (H. Wilf): https://www.math.upenn.edu/wilf/gfology2.pdf,

◦ z kn´ıˇzky Analytic Combinatorics (P. Flajolet, R. Sedgewick): http://algo.inria.fr/flajolet/Publications/book.pdf.

Zdroje: http://crcpress.com a algo.inria.fr

(35)

Pro z´ ajemce

• V´ıce se o vytvoˇruj´ıc´ıch funkc´ıch lze dozvˇedˇet napˇr´ıklad

◦ na pˇredn´aˇsceAnalytick´a kombinatorika,

◦ z kn´ıˇzky Generatingfunctionology (H. Wilf):

https://www.math.upenn.edu/wilf/gfology2.pdf,

◦ z kn´ıˇzky Analytic Combinatorics (P. Flajolet, R. Sedgewick):

http://algo.inria.fr/flajolet/Publications/book.pdf.

Zdroje: http://crcpress.com a algo.inria.fr

(36)

Zdroj: slideplayer.com

(37)

Koneˇcn´e projektivn´ı roviny

(38)

Zdroj: http://math.stackexchange.com

Dˇekuji za pozornost.

Odkazy

Související dokumenty

” A drunk man will find his way home, but a drunk bird may get lost forever.“..

Obr´ azek: Hled´ an´ı minim´ aln´ıho ˇrezu v ˇ zelezniˇ cn´ı s´ıti v´ ychodn´ıho bloku.. Zdroj: Fundamentals of a method for evaluating rail net

◦ ” ...this marvelous accomplishment of reason gave to the human spirit the confidence it needed for its future achievements...“ Albert Einstein.. • Nov´ e pojet´ı

Poˇ c´ıt´ ame-li prvky jedn´ e mnoˇ ziny dvˇ ema zp˚ usoby, dostaneme vˇ zdy stejn´ y v´ ysledek.... Poˇc´ıt´ an´ı dvˇema

Zdroj: http://img.signaly.cz..

Mawgan Church pˇripom´ınaj´ıc´ı Hanniballa Basseta ( 1709).. Dˇekuji

Poˇc´ıt´ an´ı dvˇema zp˚

Obr´ azek: Sonda Mariner 9 a Hadamardova matice 32 × 32 pouˇ zita pˇri k´ odov´ an´ı. Zdroje: http://www.realspacemodels.com