• Nebyly nalezeny žádné výsledky

Computation of free flow around the airfoil and comparison

In document Text práce (27.72Mb) (Stránka 70-137)

We computed the case ±0% (Sβ = 0kg m) for inlet velocity 7.5 m/s in free area for investigation of the influence of walls of the channel on the aero-elastic stability of the system. The computation was done on the mesh shown in Figure 9. We obtained the results given in Figure 62. The computed

pressure field, the magnitude of velocity field are shown in Figures 68 - 69 at several time instants.

The comparison with the flow in the channel is shown in Figure 63 and gives an evidence of the influence of a wall of a tunnel on the aero-elastic stability. The test shows that closer walls to an airfoil drive the system more unstable.

Figure 9: Anisotropically adapted mesh for NACA 0012 airfoil inserted into free area

-10 -8 -6 -4 -2 0 2 4 6 8 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-10 -8 -6 -4 -2 0 2 4 6 8 10

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400 500

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 10: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 2.5 m/s.

72

0 0.2 0.4 0.6 0.8 1 1.2

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 0.5 1 1.5 2 2.5 3 3.5 4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 11: Spectral analysis for case ±0% and for inlet velocity 2.5m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-10 -8 -6 -4 -2 0 2 4 6 8 10

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 12: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 5 m/s.

74

0 0.1 0.2 0.3 0.4 0.5 0.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 13: Spectral analysis for case ±0% and for inlet velocity 5m/s.

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400 500

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 14: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 7.5 m/s.

76

0 0.1 0.2 0.3 0.4 0.5 0.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 15: Spectral analysis for case ±0% and for inlet velocity 7.5m/s.

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.2 0.4 0.6 0.8 1 1.2

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-8 -6 -4 -2 0 2 4 6 8

0 0.2 0.4 0.6 0.8 1 1.2

α [°]

time [s]

-600 -400 -200 0 200 400 600

-8 -6 -4 -2 0 2 4 6 8

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.2 0.4 0.6 0.8 1 1.2

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-30 -20 -10 0 10 20 30

β [°/s]

β [°]

• S

Figure 16: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 10 m/s.

78

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 17: Spectral analysis for case ±0% and for inlet velocity 10 m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-6 -4 -2 0 2 4 6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

α [°]

time [s]

-600 -400 -200 0 200 400 600

-6 -4 -2 0 2 4 6

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000

-30 -20 -10 0 10 20 30

β [°/s]

β [°]

• S

Figure 18: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 12.5 m/s.

80

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 19: Spectral analysis for case ±0% and for inlet velocity 12.5 m/s.

-10 -5 0 5 10 15

0 0.05 0.1 0.15 0.2 0.25

-h [mm]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400 500

-10 -5 0 5 10 15

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.05 0.1 0.15 0.2 0.25

α [°]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.05 0.1 0.15 0.2 0.25

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-25 -20 -15 -10 -5 0 5 10 15 20 25

β [°/s]

β [°]

• S

Figure 20: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 15 m/s.

82

0 0.5 1 1.5 2 2.5 3 3.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 21: Spectral analysis for case ±0% and for inlet velocity 15 m/s.

-15 -10 -5 0 5 10 15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-h [mm]

time [s]

-600 -400 -200 0 200 400 600

-15 -10 -5 0 5 10 15

- h

[mm/s]

-h [mm]

• S

-4 -3 -2 -1 0 1 2 3 4 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

α [°]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

β [°/s]

β [°]

• S

Figure 22: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 17.5 m/s.

84

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 23: Spectral analysis for case ±0% and for inlet velocity 17.5 m/s.

-15 -10 -5 0 5 10 15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-h [mm]

time [s]

-800 -600 -400 -200 0 200 400 600 800 1000

-15 -10 -5 0 5 10 15

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

α [°]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-30 -20 -10 0 10 20 30

β [°/s]

β [°]

• S

Figure 24: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 20 m/s.

86

0 0.5 1 1.5 2 2.5 3 3.5 4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 25: Spectral analysis for case ±0% and for inlet velocity 20 m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-10 -8 -6 -4 -2 0 2 4 6 8 10

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400 500

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-1500 -1000 -500 0 500 1000 1500

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 26: Functionsh, α,β and their phase diagrams for case +5% and for inlet velocity 2.5 m/s.

88

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 0.5 1 1.5 2 2.5 3

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 27: Spectral analysis for case +5% and for inlet velocity 2.5 m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-10 -8 -6 -4 -2 0 2 4 6 8 10

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400 500

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-1500 -1000 -500 0 500 1000 1500

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 28: Functionsh, α,β and their phase diagrams for case +5% and for inlet velocity 5 m/s.

90

0 0.1 0.2 0.3 0.4 0.5 0.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 0.5 1 1.5 2 2.5 3 3.5 4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 29: Spectral analysis for case +5% and for inlet velocity 5 m/s.

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 30: Functionsh, α,β and their phase diagrams for case +5% and for inlet velocity 7.5 m/s.

92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 31: Spectral analysis for case +5% and for inlet velocity 7.5 m/s.

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.2 0.4 0.6 0.8 1 1.2

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-8 -6 -4 -2 0 2 4 6 8

0 0.2 0.4 0.6 0.8 1 1.2

α [°]

time [s]

-800 -600 -400 -200 0 200 400 600 800

-8 -6 -4 -2 0 2 4 6 8

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.2 0.4 0.6 0.8 1 1.2

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-30 -20 -10 0 10 20 30

β [°/s]

β [°]

• S

Figure 32: Functionsh, α,β and their phase diagrams for case +5% and for inlet velocity 10 m/s.

94

0 0.2 0.4 0.6 0.8 1 1.2

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.5 1 1.5 2 2.5 3

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 33: Spectral analysis for case +5% and for inlet velocity 10 m/s.

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

α [°]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-25 -20 -15 -10 -5 0 5 10 15 20 25

β [°/s]

β [°]

• S

Figure 34: Functionsh, α,β and their phase diagrams for case +5% and for inlet velocity 12.5 m/s.

96

0 0.5 1 1.5 2 2.5 3

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 35: Spectral analysis for case +5% and for inlet velocity 12.5 m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-h [mm]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

α [°]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

β [°/s]

β [°]

• S

Figure 36: Functionsh, α,β and their phase diagrams for case +5% and for inlet velocity 15 m/s.

98

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 37: Spectral analysis for case +5% and for inlet velocity 15 m/s.

-15 -10 -5 0 5 10 15

0 0.1 0.2 0.3 0.4 0.5 0.6

-h [mm]

time [s]

-600 -400 -200 0 200 400 600

-15 -10 -5 0 5 10 15

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.1 0.2 0.3 0.4 0.5 0.6

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

0 0.1 0.2 0.3 0.4 0.5 0.6

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

β [°/s]

β [°]

• S

Figure 38: Functionsh, α,β and their phase diagrams for case +5% and for inlet velocity 17.5 m/s.

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 39: Spectral analysis for case +5% and for inlet velocity 17.5 m/s.

-15 -10 -5 0 5 10 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-h [mm]

time [s]

-800 -600 -400 -200 0 200 400 600 800

-15 -10 -5 0 5 10 15

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

α [°]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-25 -20 -15 -10 -5 0 5 10 15 20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-25 -20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 40: Functionsh, α,β and their phase diagrams for case +5% and for inlet velocity 20 m/s.

102

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 41: Spectral analysis for case +5% and for inlet velocity 20 m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-10 -8 -6 -4 -2 0 2 4 6 8 10

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400 500

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20 25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20 25

β [°/s]

β [°]

• S

Figure 42: Functionsh, α, β and their phase diagrams for case −5% and for inlet velocity 2.5 m/s.

104

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 0.5 1 1.5 2 2.5 3 3.5 4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 43: Spectral analysis for case −5% and for inlet velocity 2.5m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-10 -8 -6 -4 -2 0 2 4 6 8 10

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20 25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20 25

β [°/s]

β [°]

• S

Figure 44: Functionsh, α, β and their phase diagrams for case −5% and for inlet velocity 5 m/s.

106

0 0.1 0.2 0.3 0.4 0.5 0.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 0.5 1 1.5 2 2.5 3 3.5 4

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 45: Spectral analysis for case −5% and for inlet velocity 5m/s.

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20 25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20 25

β [°/s]

β [°]

• S

Figure 46: Functionsh, α, β and their phase diagrams for case −5% and for inlet velocity 7.5 m/s.

108

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 47: Spectral analysis for case −5% and for inlet velocity 7.5m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-8 -6 -4 -2 0 2 4 6 8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

α [°]

time [s]

-800 -600 -400 -200 0 200 400 600 800

-8 -6 -4 -2 0 2 4 6 8

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

β [°]

time [s]

-3000 -2000 -1000 0 1000 2000 3000

-30 -20 -10 0 10 20 30

β [°/s]

β [°]

• S

Figure 48: Functionsh, α, β and their phase diagrams for case −5% and for inlet velocity 10 m/s.

110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.5 1 1.5 2 2.5 3

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 49: Spectral analysis for case −5% and for inlet velocity 10 m/s.

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-6 -4 -2 0 2 4 6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

α [°]

time [s]

-600 -400 -200 0 200 400 600

-6 -4 -2 0 2 4 6

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-30 -20 -10 0 10 20 30

β [°/s]

β [°]

• S

Figure 50: Functionsh, α, β and their phase diagrams for case −5% and for inlet velocity 12.5 m/s.

112

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 51: Spectral analysis for case −5% and for inlet velocity 12.5 m/s.

-15 -10 -5 0 5 10 15

0 0.05 0.1 0.15 0.2 0.25

-h [mm]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400 500

-15 -10 -5 0 5 10 15

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.05 0.1 0.15 0.2 0.25

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-30 -20 -10 0 10 20 30

0 0.05 0.1 0.15 0.2 0.25

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-30 -20 -10 0 10 20 30

β [°/s]

β [°]

• S

Figure 52: Functionsh, α, β and their phase diagrams for case −5% and for inlet velocity 15 m/s.

114

0 0.5 1 1.5 2 2.5 3 3.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 53: Spectral analysis for case −5% and for inlet velocity 15 m/s.

-15 -10 -5 0 5 10 15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

-h [mm]

time [s]

-600 -400 -200 0 200 400 600 800

-15 -10 -5 0 5 10 15

- h

[mm/s]

-h [mm]

• S

-4 -3 -2 -1 0 1 2 3 4 5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

α [°]

time [s]

-400 -300 -200 -100 0 100 200 300 400

-4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

β [°/s]

β [°]

• S

Figure 54: Functionsh, α, β and their phase diagrams for case −5% and for inlet velocity 17.5 m/s.

116

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 55: Spectral analysis for case −5% and for inlet velocity 17.5 m/s.

-20 -15 -10 -5 0 5 10 15

0 0.05 0.1 0.15 0.2 0.25

-h [mm]

time [s]

-800 -600 -400 -200 0 200 400 600 800 1000

-20 -15 -10 -5 0 5 10 15

- h

[mm/s]

-h [mm]

• S

-4 -3 -2 -1 0 1 2 3 4 5

0 0.05 0.1 0.15 0.2 0.25

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

0 0.05 0.1 0.15 0.2 0.25

β [°]

time [s]

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-25 -20 -15 -10 -5 0 5 10 15 20 25

β [°/s]

β [°]

• S

Figure 56: Functionsh, α, β and their phase diagrams for case −5% and for inlet velocity 20 m/s.

118

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α

0 1 2 3 4 5 6 7 8 9

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β

Figure 57: Spectral analysis for case −5% and for inlet velocity 20 m/s.

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400 500

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 58: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 7.5 m/s and half time step.

120

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

τ* = 0.01 τ* = 0.005

0 0.1 0.2 0.3 0.4 0.5 0.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum h, τ* = 0.01 spectrum h, τ* = 0.005

-6 -4 -2 0 2 4 6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

τ* = 0.01 τ* = 0.005

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum α, τ* = 0.01 spectrum α, τ* = 0.005

-20 -10 0 10 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

τ* = 0.01 τ* = 0.005

0 1 2 3 4 5 6 7 8

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

spectrum β, τ* = 0.01 spectrum α, τ* = 0.005

Figure 59: Comparison of half time step test and original case: Functions h, α,β and their spectra diagrams for case ±0% and for inlet velocity 7.5 m/s.

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-300 -200 -100 0 100 200 300

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 60: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 7.5 m/s and for turbulence model.

122

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

laminar model turbulent model

0 0.1 0.2 0.3 0.4 0.5 0.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

laminar model turbulent model

-6 -4 -2 0 2 4 6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

laminar model turbulent model

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

laminar model turbulent model

-20 -10 0 10 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

laminar model turbulent model

0 1 2 3 4 5 6 7 8

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

laminar model turbulent model

Figure 61: Comparison of Spalart-Allmaras turbulence model and laminar model (original case): Functions h, α, β and their spectra diagrams for case

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

-400 -300 -200 -100 0 100 200 300

-8 -6 -4 -2 0 2 4 6 8 10 12

- h

[mm/s]

-h [mm]

• S

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

-500 -400 -300 -200 -100 0 100 200 300 400

-5 -4 -3 -2 -1 0 1 2 3 4 5

α [°/s]

α [°]

• S

-20 -15 -10 -5 0 5 10 15 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20

β [°/s]

β [°]

• S

Figure 62: Functionsh, α, β and their phase diagrams for case ±0% and for inlet velocity 7.5 m/s and for free flow.

124

-8 -6 -4 -2 0 2 4 6 8 10 12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-h [mm]

time [s]

tunnel free area

0 0.1 0.2 0.3 0.4 0.5 0.6

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

tunnel free area

-6 -4 -2 0 2 4 6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α [°]

time [s]

tunnel free area

0 0.5 1 1.5 2 2.5

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

tunnel free area

-20 -10 0 10 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β [°]

time [s]

tunnel free area

0 1 2 3 4 5 6 7 8

0 5 10 15 20 25 30 35 40 45 50

amplitude

frequency [Hz]

tunnel free area

Figure 63: Comparison of free flow and original case (flow in a tunnel):

Functions h, α, β and their spectra diagrams for case ±0% and for inlet

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t=−0.002s t= 0.014s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t = 0.03s t= 0.046s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t= 0.062s t= 0.078s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t= 0.094s t = 0.11s

Figure 64: Pressure field by laminar model for case±0% and for inlet velocity 7.5 m/s .

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t=−0.002s t= 0.014s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t = 0.03s t= 0.046s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t= 0.062s t= 0.078s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t= 0.094s t = 0.11s

Figure 65: Magnitude of dimensionless velocity by laminar model for case

±0% and for inlet velocity 7.5 m/s .

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t=−0.002s t= 0.014s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t = 0.03s t= 0.046s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t= 0.062s t= 0.078s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t= 0.094s t = 0.11s

Figure 66: Pressure field by turbulent model for case ±0% and for inlet velocity 7.5 m/s .

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t=−0.002s t= 0.014s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t = 0.03s t= 0.046s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t= 0.062s t= 0.078s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t= 0.094s t = 0.11s

Figure 67: Magnitude of dimensionless velocity by turbulent model for case

±0% and for inlet velocity 7.5 m/s .

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t=−0.002s t= 0.014s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t = 0.03s t= 0.046s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t= 0.062s t= 0.078s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

pressure[Pa]: -18 -12 -9 -6 -3 0 3 6 9

t= 0.094s t = 0.11s

Figure 68: Pressure field by laminar model for free flow for case ±0% and for inlet velocity 7.5 m/s .

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t=−0.002s t= 0.014s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t = 0.03s t= 0.046s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t= 0.062s t= 0.078s

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

velocity: 0 0.20.40.60.8 1 1.2

t= 0.094s t = 0.11s

Figure 69: Magnitude of dimensionless velocity by laminar model for free flow for case ±0% and for inlet velocity 7.5 m/s .

5 Conclusion

This work was devoted to the numerical simulation of the interaction of viscous, incompressible flow with a vibrating airfoil with three degrees of freedom. The governing system consists of the Navier-Stokes equations and continuity equation formulated with the aid of the ALE method, considered in a time-dependent computational domain and equipped with initial and boundary conditions, and the structure second-order ordinary differential equations for the displacement h in the vertical direction, the rotation angle α of the airfoil and the rotation angle β of the flap.

The main attention was paid to the development of a sufficiently ac-curate, efficient and robust numerical method, based on the application of the stabilized finite element method for the flow problem combined with the Runge-Kutta scheme for the structure problem. The method allows the solu-tion of laminar as well as turbulent flow. Due to the complexity and difficulty of the problem, the work is not concerned with the analysis of qualitative properties of the continuous problem or with theoretical investigation of the computational process.

The developed numerical technique was programmed in the language C and tested on a technically relevant problem of flow past an airfoil inserted into a wind tunnel, for which NASTRAN results are available.

We obtained a good agreement with NASTRAN results in main and flut-ter frequencies for lower inlet velocities and also in showing the tendency of lowering of the main frequency of the motion of the airfoil in dependence on increasing the inlet flow velocity. Both our computations and the NASTRAN analysis show that the system becomes unstable at the inlet velocity 10 m/s.

The improvement of the accuracy of the computational process by including the Spalart-Allmaras turbulence model in our simulations is significant. The half time step test shows the accuracy of the method. The computation of flow past an airfoil in free area shows that the existence of tunnel walls drives the airfoil more unstable.

Finally, the algorithm proves to be very useful for the prediction of behav-ior of systems in instabilities for large vibration amplitudes, when aero-elastic stability is lost. The most significant contribution consists in the fact that it is very difficult to detect experimentally a loss of aero-elastic stability, because of the high price of aerodynamic models used in experiments and because of the possibility of the destruction of such models. On the other hand, the developed numerical technique allows the analysis of a number of cases during relatively short time and at low expenses.

References

[1] K.J.Bathe, H.Zhang: Finite element developments for general fluid flows with structural interactions, International Journal for Numerical Methods in Engineering 60, Pages 213-232, 2004

[2] O.O.Bendiksen, G. Seber: Fluid-structure interactions with both structural and fluid nonlinearities, Journal of Sound and Vibration, Vol-ume 315, Issue 3, Pages 664–684, 2008

[3] M.Brdiˇcka, L.Samek, B.Sopko: Mechanika kontinua, Academia, Praha, 2000

[4] F.Brezzi, R.S.Falk: Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28, Pages 581–590, 1991

[5] F.Brezzi, M.Fortin: Mixed and hybrid finite element method, Springer Series in Computational Mathematics 15, Springer-Verlag, New York, 1991

[6] A.N.Brooks, T.J.R.Hughes: Streamline upwind Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible NavierStokes equations, Comput. Methods Appl.

Mech. Engrg. 32, Pages 199-259, 1982

[7] C.-H.Brunneau, P.Fabrie:, New efficient boundary conditions for incompressible Navier-Stokes equations: a well-posedness result, Mathe-matical Modelling and Numerical Analysis 30, Pages 815–840, 1996 [8] D.Brunner, M.Junge, L.Gaul:, A comparison of FE-BE coupling

schemes for large-scale problems with fluid-structure interaction, Int. J.

Numer. Meth. Engng 77, Pages 664–688, 2009

[9] P.G.Ciarlet: The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1979

[10] R.Clark, D.Cox, H.C.J.Curtiss, J.W.Edwards, K.C.Hall, D.A.Peters, R.Scanlan, E.Simiu, F.Sisto, Th.W.Strganac: A Modern Course in Aeroelasticity Series, Solid Mechanics and Its Appli-cations, Vol. 116, 4th rev. and enlarged ed., XXVII, 2004

[11] R.Codina: A discontinuity capturing crosswind-dissipation for the fi-nite element solution of the convection diffusion equation, Computater Methods in Applied Mechanics and Engineering, 110, Pages 325-342, 1993

[12] T.A.Davis: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Transactions on Mathematical Soft-ware, vol 30, no. 2, Pages 165–195, 2004

[13] T.A.Davis: UMFPACK V4.0, University of Florida

[14] J.Dobeˇs, J.F¨urst, H.Deconinck, J.Foˇrt:, Numerical solution of transonic and supersonic 2D and 3D fluid-elastic structure interaction problems, Proceedings of ENUMATH 2007, Pages 539–546, 2008

[15] V.Dolejˇs´ı: ANGENER V3.0, Faculty of Mathematics and Physics, Charles University in Prague

[16] V.Dolejˇs´ı: Anisotropic Mesh Adaptation Technique for Viscous Flow Simulation, East-West Journal of Numerical Mathematics 9, Pages 1–24, 2001

[17] E.H.Dowell: A Modern Course in Aeroelasticity, Kluwer Academic Publishers, Dodrecht, 1995

[18] L.Dubcov´a, M.Feistauer, J.Hor´aˇcek, P.Sv´aˇcek: Numerical simulation of airfoil vibrations induced by turbulent flow, Journal of Computational and Applied Mathematics, Volume 218, Issue 1, Pages 34–42, 2008

[19] M.Feistauer: Mathematical Methods in Fluid Dynamics, Academia, Praha, 1993

[20] M.Feistauer, T.Neustupa: On non-stationary viscous incompress-ible flow throught a cascade of profile, Math. Meth. Appl. Sci. 29, Pages 1907–1941, 2006

[21] L.P.Franca, S.L.Frey: Stabilized finite element methods: II. The incompressible NavierStokes equations, Comput. Methods Appl. Mech.

Engrg. 99, Pages 209-233, 1992

[22] T.Gelhard, G.Lube, M.A.Olshanskii, J.H.Starcke: Stabilized finite element schemes with LBB-stable elements for incompressible flows, J. Comput. Appl. Math. 177, Pages 243–267, 2005

[23] V.Girault, P.A.Raviart: Finite Element Approximation of the Navier-Stokes Equations, Springer, Berlin, 1979

[24] V.Girault, P.A.Raviart: Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, 1986

[25] C.Grandmont: Existence of weak solutions for the unsteady interac-tion of a viscous fluid with an elastic plate, SIAM J. Math. Anal. Vol.

40, No. 2, Pages 716-737, 2008

[26] J.-L.A.Guermond:, Theory and Practice of Finite Elements, Series:

Applied Mathematical Sciences, Vol. 159, 2004

[27] M.Guidorzi, M.Padula, P.I.Plotnikov: Hopf solutions to a fluid-elastic interaction model, Math. Models Methods Appl. Sci. 18, No. 2, Pages 215-269, 2008

[28] M.Heil: An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering 193, Pages 1-23, 2004

[29] J.G.Heywood, R.Rannacher, S.Turek: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equa-tions, Int. J. Numer. Methods Fluids 22, No. 5, Pages 325–352, 1996 [30] K.-H.Hoffmann, V.N.Starovoitov: On a motion of a solid body

in a viscous fluid. Two-dimensional case., Advanced in Mathematical Sciences and Applications 9(1999)2, Pages 633-648, 1999

[31] W.Holger:,Hybrid methods for fluid-structure-interaction problems in aeroelasticity, Lecture Notes in Computational Science and Engineering 65, Pages 335–358, 2008

[32] J.Horsk´y, J.Novotn´y, M.ˇStefan´ık: Mechanika ve fyzice, Academia, Praha, 2001

[33] G.Houzeaux: A Geometrical Domain Decomposition Method in Com-putational Fluid Dynamics, PhD thesis, UPC, 2003

[34] J.Hron, S.Turek: A monolithic FEM/multigrid solver for ALE for-mulation of fluid-structure interaction with application in biomechanics, Lecture Notes in Computational Science and Engineering. FluidStruc-ture Interaction Modelling, Simulation, Optimisation. Springer-Verlag, Pages 146-170, 2006

[35] D.G.Hull: Fundamentals of Airplane Flight Mechanics, Springer Berlin Heidelberg, 2007

[36] V.John, P.Knobloch:,On spurious oscillations at layers diminishing (SOLD) method for convection-diffusion equations, Part I - A review, Comput. Methods Appl. Mech. Engrg. 196, Pages 2197–2215, 2007

[37] P.Knobloch: On the definition of the SUPG parameter, Electronic Transactions on Numerical Analysis, Volume 32, Pages 78–89, 2008 [38] A.Kourta, G.Petit, J.C.Courty, J.P.Rosenblum:, Buffeting in

transonic flow prediction using time-dependent turbulence model, Int. J.

Numer. Meth. Fuids 49, Pages 171–182, 2005

[39] S.Kraˇcmar, J.Neustupa:, A weak solvability of a steady variational inequality of the Naviere-Stokes type with mixed boundary conditions, Nonlinear Analysis 47, Pages 4169–4180, 2001

[40] S.Kraˇcmar, J.Neustupa:, Modelling of flows of a viscous incom-pressible fluid through a channel by means of variational inequalities, Z. Angew. Math. Mech. 71, No. 6, 1994

[41] S.G.Krejn, G.I.Laptev: On the problem of the motion of a viscous fluid in an open vessel, Functional Anal. Appl. 2, Pages 38–47, 1968 [42] J.Kurzweil:,Obyˇcejn´e diferenci´aln´ı rovnice, SNTL, Praha, 1978 [43] V.Los´ık, J. ˇCeˇcrdle:, V´ypoˇcet flatru 3-dof modelu profilu kˇr´ıdla

VZL ˇU, V´ypoˇcetn´ı protokol P-PL-0061/07, Praha - Letˇnany, 2007 [44] G.Lube: Stabilized Galerkin finite element methods for convection

dom-inated and incompressible flow problems, Num. Anal. and Math. Model., Banach Center publications (29), Warszawa, 1994

[45] E.Naudasher, D.Rockwell: Flow-Induced Vibrations, A.A.

Balkema, Rotterdam, 1994

[46] J.Neustupa: Existence of a weak solution to the Navier-Stokes equa-tion in a general time-varying domain by the Rothe method, Mathemat-ical Methods in the Applied Sciences 32, Pages 653-683, 2009

[47] T.Nomura, T.J.R.Hughes: An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Computer Methods in Applied Mechanics and Engineering 95, Pages 115-138, 1992 [48] S.B.Pope: Turbulent Flows, Cambridge University Press, 2000

[49] A.Quarteroni, A.Valli:, Numerical Approximation of Partial Dif-ferential Equations, Springer, Berlin, 1997

[50] M.R˚uˇziˇcka: Interakce nestlaˇciteln´e tekutiny a obt´ekan´ych tˇeles, Mas-ter thesis, Faculty of Mathematics and Physics, Charles University in Prague, 2005

In document Text práce (27.72Mb) (Stránka 70-137)