• Nebyly nalezeny žádné výsledky

Cauchy problem for multidimensional coupled system of nonlinear Schr¨ odinger equation and generalized IMBq equation

N/A
N/A
Protected

Academic year: 2022

Podíl "Cauchy problem for multidimensional coupled system of nonlinear Schr¨ odinger equation and generalized IMBq equation"

Copied!
24
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

Cauchy problem for multidimensional coupled system of nonlinear Schr¨ odinger equation and generalized IMBq equation

Chen Guowang

Dedicated to the memory of Prof. Jan Potoˇcek and Prof. Josef Kolom´y.

Abstract. The existence, uniqueness and regularity of the generalized local solution and the classical local solution to the periodic boundary value problem and Cauchy problem for the multidimensional coupled system of a nonlinear complex Schr¨odinger equation and a generalized IMBq equation

t+2ε= 0,

utt− ∇2ua2utt=2f(u) +2(|ε|2) are proved.

Keywords: coupled system of nonlinear Schr¨odinger equation and generalized IMBq, multidimensional, periodic boundary value problem, Cauchy problem, generalized local solution, classical local solution

Classification: 35L35, 35K55

1. Introduction

In [1], [2] the problems of soliton solutions for the Schr¨odinger field interacting with the Boussinesq field have been studied and an approximate solution of system

txx−uε= 0, (1.1)

2

∂t2 − ∂2

∂x2 −δ 3

4

∂x4

u−δ ∂2

∂x2(u2) = ∂2

∂x2(|ε|2) (1.2)

have been found, where δ > 0 is a constant. The exact soliton solutions of the above system were obtained in [3]–[5] by various techniques. In [2] author suggested that the Boussinesq equation (1.2) (which we call Bq-equation) was replaced by the IBq equation (the improved Bq-equation)

(1.3) ∂2

∂t2 − ∂2

∂x2 −δ 3

4

∂x2∂t2

u−δ ∂2

∂x2(u2) = ∂2

∂x2(|ε|2)

The project was supported by National Natural Science Foundation of China (Grant No. 1967/075).

(2)

and the soliton solutions of system (1.1), (1.3) were obtained. A modification of IBq equation analogous to the MKdV equation yields

(1.4) ∂2

∂t2 − ∂2

∂x2 − ∂4

∂x2∂t2

u= ∂2

∂x2(u3),

which we call the IMBq equation. The IMBq equation with several variables (see [2]) is

(1.4) utt− ∇2utt− ∇2u=∇2u3.

In this paper, we study the system of the multidimensional Schr¨odinger field interacting with real generalized IMBq field

t+∇2ε−uε= 0, (1.5)

utt− ∇2u−a∇2utt=∇2f(u) +∇2(|ε|2), (1.6)

whereε(x, t) denotes complex unknown function of variablesx= (x1, x2,· · · , xn)

∈ Rn and t ∈ R+, u(x, t) denotes a real unknown function of variables x and t, ∇ = ∂x

1,∂x

2,· · ·,∂x

n

, a > 0 is a constant, i = √

−1 and f(s) is a given nonlinear function.

Let Ω⊂Rnbe ann-dimensional cube with width 2D(D >0) in each direction, that is Ω ={x= (x1, x2,· · ·, xn)| |xj| ≤D, j= 1,2,· · ·, n}, x+ 2Dej denotes (x1,· · ·, xj1, xj + 2D, xj+1,· · ·, xn) (j = 1,2,· · ·, n) and QT = {x∈ Ω,0 ≤ t ≤ T}. For the system (1.5), (1.6), we discuss its periodic boundary value problem in the (n+ 1)−dimensional cylindrical domainQT

ε(x, t) =ε(x+ 2Dej, t), u(x, t) =u(x+ 2Dej, t), j= 1,2,· · ·, n, (1.7)

ε(x,0) =ε0(x), u(x,0) =ϕ(x), ut(x,0) =ψ(x), (1.8)

where ε0(x), ϕ(x) and ψ(x) are given functions of n-dimensional initial value, satisfying the periodic boundary conditions (1.7). For the system (1.5), (1.6) we also study the Cauchy problem

(1.9) ε(x,0) =ε0(x), u(x,0) =ϕ(x), ut(x,0) =ψ(x), whereε0(x),ϕ(x) andψ(x) are given functions defined inRn.

In Section 2 the existence and uniqueness of the generalized local solution and the classical local solution of the periodic boundary value problem (1.5)–(1.8) are proved. Moreover the regularity of the classical local solution of the problem (1.5)–(1.8) is considered. In Section 3 the existence, uniqueness and regularity of the generalized local solution and the classical local solution of the Cauchy problem (1.5), (1.6), (1.9) are proved.

For simplicity, leta= 1 in (1.6). We prove only the existence, uniqueness and regularity of the generalized local solutions and the classical local solution for the 2-dimensional problem, because we can treat the n-dimensional problem by the method of the 2-dimensional case.

(3)

2. Periodic boundary value problem (1.5)–(1.8) We first establish an orthonormal base onL2(Ω).

Lemma 2.1([6], [7]). LetΩ1⊂Rnand∧ ⊂Rmbe measurable sets. If {ϕj}jJ

and {χk}kK (J and K are the index sets) are orthonormal bases in L2(Ω1) andL2(∧)respectively, then the system of functions{ϕj(x)χk(y)}jJ,kK is an orthonormal base inL2(Ω1× ∧).

It is clear that Lemma 2.1 is valid for the case of any finite orthonormal bases.

Let us consider the eigenvalue problem for the ordinary differential equation y′′+λy= 0,

y(x1+ 2D) =y(x1).

We can obtain eigenvalues λ1l = α2l = D2

(l = 0,1,· · ·) and the family of eigenfunctions {yl(x1)} = 1

2D,1

Dcosαlx1,1

Dsinαlx1, l = 1,2,· · · , which composes an orthonormal base. Similarly, we can obtain eigenvalues λ2j = β2j = D2

(j = 0,1,· · ·) and the family of eigenfunctions {zj(x2)} = 1

2D,1

Dcosβjx2,1

Dsinβjx2, j = 1,2,· · · of the periodic boundary value problemz′′+λz= 0,z(x2+2D) =z(x2).{zj(x2)}composes an orthonormal base.

According to Lemma 2.1, the family of functions{yl(x1)zj(x2), l, j = 0,1,· · · } composes an orthonormal base inL2(Ω).

Let (ε(x, t), u(x, t)) be the solution of the problem (1.5)–(1.8), with ε(x, t) = P

l,j=0Llj(t)yl(x1)zj(x2) and u(x, t) = P

l,j=0Tlj(t)yl(x1)zj(x2). The initial value functions may be expressed ε0(x) = P

l,j=0εljyl(x1)zj(x2), ϕ(x) = P

l,j=0ϕljyl(x1)zj(x2) and ψ(x) = P

l,j=0ψljyl(x1)zj(x2), where εlj are com- plex numbers,ϕljlj are real numbers.

Substituting the expressions ofε(x, t) andu(x, t) into the system (1.5), (1.6), mul- tiplying both sides of (1.5) and (1.6) byyl(x1)zj(x2) respectively and integrating over Ω, we get

(2.1) iL˙lj−(α2l2j)Llj− Z

uεyl(x1)zj(x2)dx= 0,

(2.2) (1 +α2lj2) ¨Tlj+ (α2l2j)Tlj− Z

(∇2f(u) +∇2(|ε|2))· yl(x1)zj(x2)dx= 0, l, j= 0,1,· · ·.

Substituting the expressions ofε(x, t), u(x, t),ε0(x),ϕ(x) andψ(x) into the initial conditions (1.8), we obtain

(2.3) Llj(0) =εlj, Tlj(0) =ϕlj, T˙lj(0) =ψlj, l, j= 0,1· · ·,

(4)

where ˙Tlj(t) = dtdTlj(t), etc. HenceLlj(t) andTlj(t) satisfy the infinite system of ordinary differential equations (2.1)–(2.3). Let us now prove the existence of the solution for the initial value problem (2.1)–(2.3). For this purpose, we shall first consider the existence of the solution for the following initial value problem of a finite system of ordinary differential equations

iL˙N lj−(α2lj2)LN lj = Z

uNεNyl(x1)zj(x2)dx, (2.4)

(1 +α2lj2) ¨TN lj + (α2l2j)TN lj (2.5)

= Z

(∇2f(uN) +∇2(|εN|2))yl(x1)zj(x2)dx, LN lj(0) =εlj, TN lj(0) =ϕlj, T˙N lj(0) =ψlj, l, j= 0,1· · · , N, (2.6)

whereεN(x, t) =PN

l,j=0LN lj(t)yl(x1)zj(x2) anduN(x, t) = PN

l,j=0TN lj(t)yl(x1)zj(x2). In order to use Leray-Schauder’s fixed-point argu- ment we are also going to consider the following initial value problem of the finite system of ordinary differential equations with the parameterθ

iL˙N lj−(α2lj2)LN lj =θ Z

uNεNyl(x1)zj(x2)dx, (2.7)

(1 +α2lj2) ¨TN lj+ (α2lj2)TN lj (2.8)

=θ Z

(∇2f(uN) +∇2(|εN|2))yl(x1)zj(x2)dx, LN lj(0) =θεlj, TN lj(0) =θϕlj,

(2.9)

N lj(0) =θψlj, l, j= 0,1· · · , N, 0≤θ≤1.

Lemma 2.2. Suppose that the following conditions are satisfied.

1. f ∈C5,|f(j)(s)| ≤Kj|s|P+(5j)(j= 1,2,3,4,5), where

Kj(j= 1,2,3,4,5)are constants,p≥1 is a natural number and(j)denotes the order of derivatives.

2. (L(t), T(t))is the solution of the system(2.4),(2.5), where

L(t) = (LN lj(t), l, j= 0,1,· · ·, N)and T(t) = (TN lj(t), l, j= 0,1,· · ·, N).

Let

EN(t) = XN

l,j=0

(1 +α2l2j + X

h+m=8 h,m=0,2,4,6,8

αhlβjm (2.10)

+2 X

h+m=10 h,m=2,4,6,8

αhlβjm10lj10) ˙TN lj2

(5)

+ XN

l,j=0

(1 +α2lj2+ 2 X

h+m=10 h,m=2,4,6,8

αhlβjm10l10j )TN lj2

+ XN

l,j=0

(1 + X

h+m=10 h,m=0,2,4,6,8,10

αhlβjm)|LN lj|2+ 1.

Then there is

(2.11) dEN(t)

dt ≤K6(EN(t))P+62 , whereK6>0is a constant independent of θ, Dand N.

Proof: Multiplying both sides of (2.7) by (1 +α4lβj66lβj42lβ8j8lβj2+ α10l10j )LN lj, summing up the products forl, j = 0,1,· · ·, N and taking the imaginary part, we get

(2.12)

d dt

n XN

l,j=0

(1 + X

h+m=10 h,m=0,2,4,6,8,10

αhlβjm)|LN lj|2o

= 2θImhuNεN,− X

h+m=10 h,m=0,2,4,6,8,10

εN xh 1xm2 i,

whereLN lj is the conjugate number ofLN lj andhu, vi=R

u(x)v(x)dx.

Multiplying both sides of (2.8) by (1 +α4lβj46lβj22lβj68l8j) ˙TN lj, summing up the products for l, j = 0,1,· · ·, N, adding dtd PN

l,j=0TN lj2 to both sides of the obtained equation and adding the equation (2.12), we have

(2.13)

dEN(t)

dt = 2θh∇2f(uN) +∇2(|εN|2), uN t+ X

h+m=8 h,m=0,2,4,6,8

uN xh 1xm2 ti

+d

dthuN, uNi+ 2θImhuNεN,− X

h+m=10 h,m=0,2,4,6,8,10

εNxh1xm2 i.

k · kL2(Ω)=k · k,k · kL(Ω) andk · kHm(Ω) denote the norm of the spaceL2(Ω), L(Ω) and Sobolev spaceHm(Ω) respectively.

(6)

Since by (2.10) we have

(2.14)

EN(t) = X2 j=1

X

h=0,1,4,5

huN xh jt, uN xh

jti+ X

h+m=4 h,m=1,2,3

huN xh

1xm2 t, uN xh 1xm2 ti

+2 X

h+m=5 h,m=1,2,3,4

huN xh

1xm2 t, uN xh

1xm2ti+huN, uNi+ X2 j=1

huN xj, uN xji

+2 X

h+m=5 h,m=1,2,3,4

huN xh

1xm2 , uN xh 1xm2 i+

X2 j=1

huN x5 j, uN x5

ji +hεN, εNi+ X

h+m=5 h,m=0,1,2,3,4,5

N xh

1xm2 , εN xh

1xm2 i+ 1,

by using the Gagliardo-Nirenberg theorem [8] and (2.14) we obtain kuNkL(Ω)≤C1kuNk45kuNk

1 5

H5(Ω)≤C2(EN(t))12, (2.15)

kuN xjkL(Ω)≤C3kuNk35kuNk

2 5

H5(Ω)≤C4(EN(t))12, j= 1,2, (2.16)

kuN xjxkk,kuN xjxkkL(Ω)≤C5(EN(t))12, j, k= 1,2, (2.17)

kuN xj

1xk2k,kuN xj

1xk2kL(Ω)≤C6(EN(t))12, (2.18)

j+k= 3, j, k= 0,1,2,3, kuN xj

1xk2k,kuN xj

1xk2kL(Ω)≤C7(EN(t))12, (2.19)

j+k= 4, j, k= 0,1,2,3,4.

Similarly we can obtain

NkL(Ω),kεN xjk,kεN xjkL(Ω)≤C8(EN(t))12, j = 1,2, (2.20)

N xjxkk,kεN xjxkkL(Ω)≤C9(EN(t))12, j, k= 1,2, (2.21)

N xj

1xk2k,kεN xj

1xk2kL(Ω)≤C10(EN(t))12, (2.22)

j+k= 3, j, k= 0,1,2,3, kεN xj

1xk2k,kεN xj

1xk2kL(Ω)≤C11(EN(t))12, (2.23)

j+k= 4, j, k= 0,1,2,3,4.

(7)

Using the assumptions of Lemma 2.2, H¨older inequality and the inequalities (2.15)–(2.23) and (2.10), we have

(2.24)

|h∇2f(uN), uN ti|

=| Z

[f′′(uN)(u2N x1+u2N x2) +f(uN)(uN x2

1+uN x2

2)]uN tdx|

≤C12(EN(t))p+42 X2 j=1

Z

X2 j=1

(|uN xj|+|uN x2

j|)|uN t|dx

≤C12(EN(t))p+42 X2 j=1

(kuN xjk+kuN x2

jk)kuN tk

≤C13(EN(t))p+62 .

By means of integration by parts, H¨older inequality, inequalities (2.15)–(2.19) and the assumptions of the lemma, we have

(2.25) |h∇2f(uN), uN x6

1x22ti|=h ∂3

∂x312f(uN), uN x3

1x21ti≤C14(EN(t))p+62 . Similarly we have

|h∇2f(uN), uN x4

1x42t+uN x2

1x62t+uN x8

1t+uN x8

2ti| ≤C15(EN(t))p+62 , (2.26)

|h∇2(|εN|2), uN t+ X

j+k=8 j,k=0,2,4,6,8

uN xj

1xk2ti| ≤C16(EN(t))32. (2.27)

Integrating by parts and using inequalities (2.15)–(2.23) we get

(2.28)

|ImhuNεN, εN x4

1x62i|=|Im Z

(uNεN)x2 1x32εN x2

1x32dx|

=|Im Z

(uN x2

1x32εN+ 3uN x2

1x22εN x2+ 3uN x2 1x2εN x2

2

+uN x2 1εN x3

2+ 2uN x1x3

2εN x1+ 6uN x1x2

2εN x1x2+ 6uN x1x2εN x1x2 2

+ 2uN x1εN x1x3

2+uN x3 2εN x2

1+ 3uN x2 2εN x2

1x2

+ 3uN x2εN x2

1x22N x2

1x32dx| ≤C17(EN(t))32. Similarly, we have

(2.29) |ImhuNεN, εN x6

1x42N x8

1x22N x2

1x82N x10

1N x10

2 i| ≤C18(EN(t))12. Observe thatp≥1 and it follows (2.11) from (2.13) and (2.24)–(2.29). The proof

is thus completed.

It is easy to prove the following lemma by (2.11)

(8)

Lemma 2.3. Under the conditions of Lemma2.2, if

Nlim→∞EN(0) =b= X l,j=0

1 +α2lj2+ X

h+m=8 h,m=0,2,4,6,8

αhlβmj

+ 2 X

h+m=10 h,m=2,4,6,8

αhlβjm10lj10 ψlj2

+ XN

l,j=0

1 +α2lj2+ 2 X

h+m=10 h,m=2,4,6,8

αhlβmj10lj10 ϕ2lj

+ XN

l,j=0

1 + X

h+m=10 h,m=2,4,6,8

αhlβjm10lj10

lj|2+ 1<∞,

thenEN(t)≤b/(1−K6(p+4)2 b(p+4)/2t)2/(p+4)is uniformly bounded(letM be the bound) and independent ofN and D in any closed subinterval0≤t ≤t1 < tb, wheretb = 2/[K6(p+ 4)bp+42 ].

It is easy to prove the following lemma by Lemma 2.3 and Leray-Schauder’s fixed-point theorem[9]as in[10].

Lemma 2.4. Under the conditions of Lemma2.3, there is a solution of the initial value problem(2.4)–(2.6)of the finite system of ordinary differential equations in [0, t1], here0< t1< tb.

From the Ascoli-Arzel`a theorem we have

Corollary 2.1. Under the conditions of Lemma2.4 and for the sequences {LN lj}Nl,j=0 and {TN lj}Nl,j=0 (N = 1,2,· · ·) of the solution for the initial value problem(2.4)–(2.6), there are convergent subsequences{LNslj}Nl,j=0s and

{TNslj}Nl,j=0s respectively. AsNs→ ∞, then

LNslj →Llj, TNslj→Tlj, T˙Nslj →T˙lj (l, j= 0,1,· · ·) uniformly in[0, t1].

Lemma 2.5. Under the conditions of Lemma2.3, the seriesP

l,j=0|Llj|2, P

l,j=0αhlβmj |Llj|2 (h, m= 2,4,6,8, h+m= 10),P

l,j=0α10l |Llj|2, P

l,j=0βj10|Llj|2,P

l,j=0lj2,P

l,j=0αhllj2 (h= 2,8,10),P

l,j=0βjmlj2 (m = 2,8,10), P

l,j=0αhlβlmlj2 (h, m = 2,4,6, h+l = 8), P

l,j=0αhlβjmlj2 (h, m= 2,4,6,8,h+m= 10),P

l,j=0Tlj2,P

l,j=0αhlTlj2 (h= 2,10),P

l,j=0βjmTlj2

(9)

(m= 2,10)and P

l,j=0 αhlβjmTlj2 (h, m = 2,4,6,8, h+m= 10) are convergent and uniformly bounded(letM be the bound)in [0, t1].

Proof: Let us denote SJ = PJ

l,j=0α4lβ6j|Llj|2 (J is a natural number). Ob- viously SJ+1 > SJ. Fixing J, taking Ns(> J) sufficiently large and using the Corollary 2.1 we obtain

SJ ≤SJ− XJ

l,j=0

α4lβj6|LNslj|2+

Ns

X

l,j=0

α4lβ6j|LNslj|2 ≤1 +ENs(t).

Since the functionsENs(t) are bounded and independent ofNsin [0, t1], thenSJ is bounded. Consequently the seriesP

l,j=0α4lβj6|Llj|2is convergent and bounded in [0, t1]. Using the same method we can prove the other conclusions. The lemma

is proved.

Corollary 2.2. Under the conditions of Lemma 2.3, there exists a constant M1 >0, such that

kεkH5(Ω)+kukH5(Ω)+kutkH5(Ω)≤M1, kεkC3,λ(Ω)+kukC3,λ(Ω)+kutkC3,λ(Ω)≤M1 in[0, t1], hereε(x, t) =P

l,j=0Llj(t)yl(x1)zj(x2)and u(x, t) =P

l,j=0Tlj(t)yl(x1)zj(x2).

Lemma 2.6. Under the conditions of Lemma 2.3, εNs → ε, εNsxl → εxl (l = 1,2), uNs → u, uNsxl → uxl (l = 1,2) and uNst → ut(Ns → ∞) uni- formly in Qt1, where εNs(x, t) = PNs

l,j=0LNslj(t)yl(x1)zj(x2) and uNs(x, t) = PNs

l,j=0TNslj(t)yl(x1)zj(x2).

Proof: LetLNslj ≡0 (l, j > Ns). From Lemma 2.5 it follows that

Ns−ε| ≤ Xm

l,j=1

(Llj−LNslj)yl(x1)zj(x2)

+ X l,j=m+1

Lljyl(x1)zj(x2)+

Ns

X

l,j=m+1

LNsljyl(x1)zj(x2)

≤ 1 D

Xm

l,j=1

|Llj−LNslj|+2√

√M D

X l,j=m+1

1 α2lβ3j .

Observe Corollary 2.1. We can make the right side of the above inequality small by first choosing mand then choosing Ns, thenεNs(x, t)→ε(x, t) uniformly in Qt1, as Ns→ ∞. uNs →u,uNsxl→uxl (l= 1,2) anduNst→ut(Ns→ ∞) are

proved in a similar manner. Lemma 2.6 is proved.

(10)

Theorem 2.1. Under the conditions of Lemma2.3,(Llj(t), Tlj(t))is a solution of the initial value problem (2.1)–(2.3) in 0 ≤ t ≤ t1 < tb, where Llj(t) = limNs→∞LNslj(t), Tlj(t) = limNs→∞TNslj(t) and (LNslj(t), TNslj(t), l, j = 0,1,· · · , Ns)being solution of the initial value problem(2.4)–(2.6).

Proof: The functions LNslj(t) andTNslj(t) satisfy the system of the Volterra integral equations

(2.30) iLNslj =iεlj+ Z t

0 {(α2lj2)LNslj +huNsεNs, yl(x1)zj(x2)i}dτ ≡iεlj+HNslj,

(1 +α2lj2)TNslj= (1 +α2lj2)(ϕljljt) (2.31)

− Z t

0

(t−τ)[(α2lj2)TNslj− h∇2f(uNs) +∇2(|εNs|2), yl(x1)zj(x2)i]dτ

≡(1 +α2lj2)(ϕljljt)−FNslj, l, j= 0,1,· · ·, Ns.

The aim is to show that the functionsεlj(t) and Tlj(t) satisfy a similar system, indeed, by using of (2.30) and (2.31) we have

(2.32)

|iLlj−iεlj−Hlj| ≤ |iLlj−iLNslj|+|HNslj−Hlj|

≤ |Llj−LNslj|+ (α2lj2)t1kLlj−LNsljkC[0,t1]

+t1khuε−uNsε, yl(x1)zj(x2)ikC[0,t1]

+t1khuNsε−uNsεNs, yl(x1)zj(x2)ikC[0,t1],

(2.33)

|(1 +α2lj2)Tlj−(1 +α2lj2)(ϕljljt) +Flj|

≤(1 +α2l2j)|Tlj−TNslj|+|Flj−FNslj|

≤[1 +α2lj2+ (α2lj2)t21]kTlj−TNsljkC[0,t1]

+t21[khf(u)−f(uNs), yl′′zj+ylzj′′ikC[0,t1]

+kh|ε|2− |εNs|2, yl′′zj+ylzj′′ikC[0,t1](l, j= 0,1,· · ·, Ns), where

Hlj = Z t

0 {(α2l2j)Llj+huε, yl(x1)zj(x2)i}dτ, Flj =

Z t

0

(t−τ)[(α2lj2)Tlj− h∇2f(u) +∇2(|ε|2), yl(x1)zj(x2)i]dτ.

(11)

From Corollary 2.1 and Lemma 2.6 it follows that the right side of (2.32) and (2.33) approaches zero asNs→ ∞. Therefore (Llj(t), Tlj(t)) is a solution of the integral equations

iLlj =iεlj+Hlj,

(1 +α2lj2)Tlj= (1 +α2lj2)(ϕljljt)−Flj, l, j= 0,1,· · · . Differentiating the above first formula with respect to t and differentiating the above second formula twice with respect totwe get the conclusion of the theorem.

Theorem 2.1 is proved.

Lemma 2.7[11]. Suppose thatH(z0, z1,· · · , zl)isk-times(k≥1)continuously differentiable with respect to variables z0, z1,· · ·, zl and zj(x, t) ∈ L(QeT)∩ L2([0, T];Hk(Ω)), j= 0,1,· · ·, l. Then we have

ekH

∂xk11· · ·∂xknn

2

L2(Ω)e

≤C(M, k, l) Xl

j=1

kzjk2Hk(Ω)e ,

where M = maxj=0,1,···,lmax(x,t)

QeT|zj(x, t)|, QeT ={x= (x1,· · ·, xn)∈Ωe ⊂ Rn,t∈[0, T]},Ωeis a bounded domain inRn,ek= (k1,· · ·, kn),kj ≥0,|ek|=k= Pn

j=1kj.

Theorem 2.2. Suppose that the conditions of Lemma 2.3 are satisfied and ε0(x), ϕ(x), ψ(x) ∈ H6(Ω). Then there exists a classical solution ε(x, t) = P

l,j=0Llj(t)yl(x1)zj(x2), u(x, t) = P

l,j=0Tlj(t)yl(x1)zj(x2) of the problem (1.5)–(1.8)inQt1.

Proof: It follows from the assumptions

(2.34)

εlj = Z

ε0(x)yl(x1)zj(x2)dx, ϕlj = Z

ϕ(x)yl(x1)zj(x2)dx, ψlj =

Z

ψ(x)yl(x1)zj(x2)dx, l, j= 0,1,· · ·

and they satisfy the conditionb <∞. In this case Theorem 2.1 guarantees the existence of a solution of the initial value problem (2.1)–(2.3) in 0≤t≤t1 < tb and we have

(2.35) iL˙lj = (α2lj2)Llj+huε, ylzji,

(2.36) (1 +α2lj2) ¨Tlj =−(α2l2j)Tlj +hf(u) +|ε|2, y′′lzj+ylz′′ji, l, j= 0,1,· · ·

(12)

in [0, t1]. It follows from the finite system (2.4)–(2.6) of ordinary differential equations that

(2.37) iL˙Nslj = (α2lj2)LNslj+huNsεNs, ylzji, (2.38) (1 +α2l2j) ¨TNslj =−(α2l2j)TNslj

+hf(uNs) +|εNs|2, yl′′zj+ylzj′′i, l, j= 0,1,· · · , Ns.

SinceLNslj andTNslj converge uniformly toLlj andTlj (l, j= 0,1,· · ·) in [0, t1] as Ns → ∞, and εNs, uNs, uNsxj (j = 1,2) anduNst converge uniformly to ε, u, uxj (j = 1,2) andut respectively inQt1, as Ns → ∞, it follows from (2.35), (2.36) and (2.37), (2.38) that ˙LNslj →L˙lj and ¨TNslj→T¨lj uniformly in [0, t1] as Ns→ ∞.

Multiplying both sides of (2.4) by (α12l10l βj28lβj46lβj64lβ8j + α2lβj10j12)LN lj, summing up the products forl, j= 0,1,· · · , Nand taking the imaginary part, we have

(2.39) d dt

X

h+m=6 h,m=0,1,···,6

N xh 1xm2 k2

= 2Imh∂6

∂x61(uNεN), εN x6

1N x4 1x22

N x2

1x42N x6

2i+ 2Imh ∂6

∂x62(uNεN), εN x4

1x22N x2

1x42N x6 2i. Multiplying both sides of (2.5) by (α10l2lβj84lβj66lβ4j8lβ2jj10) ˙TN lj and summing up the products forl, j= 0,1,· · ·, N, we obtain

(2.40) d dt

X

h+m=5 h,m=0,1,···,5

kuN xh

1xm2tk2+ 2 X

h+m=6 h,m=0,1,···,5

kuN xh 1xm2tk2

+kuN x6

1tk2+kuN x6

2tk2+kuN x6

1k2+kuN x6 2k2

+ 2 X

h+m=6 h,m=1,2,···,5

kuN xh 1xm2 k2

≤2h ∂4

∂x41[∇2f(uN) +∇2(|εN|2)], uN x6

1t+uN x6

2t+uN x2 1x42t

+uN x4

1x22ti|+ 2|h ∂4

∂x42[∇2f(uN) +∇2(|εN|2)], uN x2

1x42t+uN x6 2ti. By using the H¨older inequality and Lemma 2.7, we obtain

(2.41) 2h ∂4

∂x41[∇2f(uN) +∇2(|εN|2)], uN x6

1t+uN x6

2t+uN x2

1x42t+uN x4 1x22ti

≤C19(kuNk2H6(Ω)+kuN tk2H6(Ω)+kεNk2H6(Ω)),

Odkazy

Související dokumenty

We prove the global existence and study decay properties of the solutions to the wave equation with a weak nonlinear dissipative term by constructing a stable set in H 1 ( R n

We investigate the global existence and uniqueness of solutions for some classes of partial hyperbolic differential equations involving the Caputo fractional derivative with finite

The authors [9, 21] studied regularity criteria for 3D nonhomogeneous incompressible Boussinesq equations, while Qiu and Yao [17] showed the local existence and uniqueness of

We prove a global existence and uniqueness theorem and establish a Galerkin method for solving numerically the problem.. KEY WORDS

Abstract: The existence and uniqueness of local and global solutions for the Kirchhoff–Carrier nonlinear model for the vibrations of elastic strings in noncylindrical domains

Wiener’s criterion for the regularity of a boundary point with respect to the Dirichlet problem for the Laplace equation [71] has been extended to various classes of elliptic

In Chapter 2 we impose the Oleinik entropy condition on solutions and define classical solutions of the Riemann problem for conservation law, first for convex flux functions and

In this paper, we prove the existence, uniqueness and stability of the solution of an integral geometry problem (IGP) for a family of curves of given curvature.. The functions in