• Nebyly nalezeny žádné výsledky

Reynolds Equations for Turbulence

N/A
N/A
Protected

Academic year: 2022

Podíl "Reynolds Equations for Turbulence"

Copied!
28
0
0

Načítání.... (zobrazit plný text nyní)

Fulltext

(1)

Reynolds Equations for

Turbulence

(2)

Turbulence

Jet in Cross-flow

Instantaneous Vizualization

(3)

Turbulence

• Statistics – time mean

Averaged Variance

(4)

Reynolds decomposition

• Decomposition

Mean

Fluctuation

• Properties

• NS eq

 

a t

a

 

a t

   

a t  a a t  

  0

a t a a t

    2

D a  a t

,t   ,t

u x u x u x

 ,    ,

p x t p x p x t

(5)

Ensemble average

• Quantity

Ensemble average

• Ergodic process

• Estimator

choice T, n

 

a t

1

1 n

i i

a a

n

T  

a t a a

   

lim T lim T

T n

a a t a t

 

  0

1

1 1

n .

T T

i

a t a t d a t n dt

T   n

(6)

Ensemble average choice n, T

• Statisticaly independent n > 200

• Pseudoperiodic sig. T >> Tsmax

Tsmax Tsmax

spektrum

(7)

Averaging properties

• Linearity

• Commutative

derivation integration

• Double avg.

• Product avg.

• BUT!!!

Function of time const

a b a b a a

a dx a dx

 

a a

x x

a b a  b a t 

 

b t

a b a b

(8)

Continuity eq.

BOTH fields of mean

velocities and fluctuations are solenoidal

Averaging Field of instantaneous velocities is

solenoidal

Reynolds:

0

k k

u div x

u

k k k

u u u

k 0

k

u x

 

k k 0

k k k

k k k k

u u

u u u

x x x x

k 0

k

u x

0

k k

u x

(9)

Substantial derivative

Averaging

?

NONLINEAR !

Integration per-partés:

= 0 (continuity)

i i i

k

k

Du u u

Dt t u x

i k

k i i k

k k k

u u

u u u u

x x x

k ki k i k

u u u u

x x

i i i

k

k

Du u u

Dt t u x

i 0 u 

(10)

Substantial derivative

Extra !

     

 

i i i i i k

k

k k

i i k k

i i

k

i k i k i k i k

i

k

i i k i k

k k

i i k

k

Du u u u u u

Dt t u x t x

u u u u

u u

t x

u u u u u u u u u

t x

u u u u u

t x x

Du u u

Dt x

 

 

 

i i k

k

k k

u u u

u x x

(11)

Reynolds equations

Reynolds 1894

Extra ! N-S eq.

Averaging

Reynolds Eq.

0

Reynolds Averaged Navier Stokes RANS

2 2

i i i 1 i i k

k

k i k k

Du u u p u u u

Dt t u x x x x

 

 

2 2

i 1 i

i k

Du p u

Dt x x

 

2 2

i 1 i

i k

Du p u

Dt x x

 

(12)

Solvability of RANS

• Eqs: 3 + 1

• Unknowns:

3 1 6 (sym)

All 10 PROBLEM!!!

Correlations – extra eqs

2 2

1 ;

i i i i i k

k

k i k k

Du u u p u u u

Dt t u x x x x

 

 

k 0

k

u x

, 1, 2,3

ui i p u ui k , i k, 1, 2,3

(13)

Extra eqs for correlations

Eq for fluctuations (extract RANS from NS):

Multiply by than averaging uj

(14)

Eqs for Reynolds stress

I: time change of the local correlation tensor,

II: advection of Reynolds stress through a mean flow (not total!),

III: interaction between the mean and fluctuation components of the flow and is related to the production of Reynolds stress,

IV: advection in relation to the fluctuation part of the flow,

V: effect of pressure,

VI: diffusion and dissipation resulting from viscosity, which is expressed mainly in small scale perturbations.

(15)

Eqs for Reynolds stress

• 4 + 6 = 10 eqs

• Reynolds stress

• Tensors 2nd order

• Tensors 3rd order

Total

75 unknowns !!!

(16)

Averaged Poisson eq

• Poisson eq.

• Averaging

2

1 2 k l k l k l

l k l k k l

u u u u u u

p x x x x x x

     

 

     

1 2 k l

l k

u u

p x x

    

 

(17)

Reynolds stress

Stress

Stress 1

Mean pressure

Stress 2

Mean viscous

Stress 3

Velocity fluctuations

Reynolds stress

Formal:

2 2

i 1 i i k

i k k

Du p u u u

Dt x x x

 

 

i 1 i k

ik i k

k k i

Du u u

p u u

Dt x x x

 

(18)

Reynolds stress

• Reynolds stress tensor

• Tenzor of 2nd order (matrix)

Symetrical Semidefinite

 

2

1 1 2 1 3

2

2 1 2 2 3

2

3 1 3 2 3

ij ij i j

u u u u u

R u u u u u u u

u u u u u

   

     

   

   

x

(19)

Reynolds stress

• Physics

• Mean flux of momentum in the i direction

due to fluctuation movement in the j direction

• Mean flux of momentum in the j direction due to fluctuation movement in the i direction

• Always 3D!

ij i j

R  u u 

(20)

Reynolds stress

• Covariance tensor

• Symmetrical

• Decomp. (isotropy):

Isotropic Anisotropic

Kinetic energy

Non-swirling flow

Swirling flow

i j

u u 

i j ij ij

u u   i a 2

ij 3 ij

i k

2

ij i j 3 ij

a u u  k

1 1

2 2 k k

k u u   u u 

(21)

Reynolds stress - generation

• A:

• B:

POSITIVE Reynolds stress Is generated due to

ANY TRANSVERSAL motion

x2

x1 A B

2 0, 1 0 12 1 2 0

u u R   u u 

2 0, 1 0 12 1 2 0

u u R   u u 

2 0

u 

1  2

u x

1 0

u 

2 0

u 

 

1 2

u x

1 0

u 

(22)

Reynolds stress

x2

x1 x2

x1

Isotropic fluctuations R12 = 0

Anisotropic fluctuations R12 > 0

SHEAR LAYER ISOTROPIC TURBULENCE

(23)

Quantities

• Kinetic energy

• Intenzity of fluktuations

Isotropic turbulence

Intenzity of turbulence

1 2 k k k u u

2 2 2

1 2 3

3 2

u u u

Iu Tu

u

2 2 2 2

1 2 3

u u u u Tu u2 u

(24)

DissipationRate

rate of dissipation

Specific rate of dissipation

Isotropic turbulence

2 s skl kl

1

2

i j ij

j i

u u

s x x

  k 1

2

k l k l

l k l k

u u u u

x x x x



2 1 1

15 u

x

(25)

Reynolds eqs

Anisotropic part Rij Joseph Valentin Boussinesq 1877 Hypothesis of turbulent viscosity

i 1 i k

ik

k k

i k i

Du u u

Dt x p x u

x u

2 3

i j

ij T

j i

i j

u u u u

k x x

  

i 1 i k

eff

i k k i

Du P u u

Dt x x x x

 

 ,  ,

eff t T t

x    x

 2 3

P p  k

2 2

i 1 i k

i k

i k

Du u u u

D x

p

t x x

 

 

(26)

Turbulent viscosity

• Molecular viscosity – material „constant“, property of fluid

• Turbulent viscosity – property of flow

Function of space

Function of time (if unstationary) Solution

Definition of the case

 ,  ,

eff t T t

x    x

(27)

Prandtls mixing length

• Estimate

x1 x2

u1

Mezní vrstva

hranice mezní vrstvy

x1

tot

t x2

2 1

2

t mix

l u

x

t

(28)

Transport eq

• Advection

• Production

• Transport

• Disipation

0 A P T D   

1 2 2 i

i

u q

x

i i j

j

u u u

x

 

1 2 2 j

j

u q p

x

 

1 2

k l k l

l k l k

u u u u

x x x x



Odkazy

Související dokumenty

1. Employees are obliged immediately notify the HR Department of the FA BUT that they have been ordered quarantine or isolation in connection with the COVID-19 disease.

Jestliže totiž platí, že zákonodárci hlasují při nedůležitém hlasování velmi jednot- ně, protože věcný obsah hlasování je nekonfl iktní, 13 a podíl těchto hlasování

Výše uvedené výzkumy podkopaly předpoklady, na nichž je založen ten směr výzkumu stranických efektů na volbu strany, který využívá logiku kauzál- ního trychtýře a

Poměr hlasů v domácí obci vůči hlasům v celém obvodě Poměr hlasů v okolních obcích vůči hlasům v celém obvodě Poměr hlasů v ostatních obcích vůči hlasům v

Ustavení politického času: syntéza a selektivní kodifikace kolektivní identity Právní systém a obzvlášť ústavní právo měly zvláštní důležitost pro vznikající veřej-

Mohlo by se zdát, že tím, že muži s nízkým vzděláním nereagují na sňatkovou tíseň zvýšenou homogamíí, mnoho neztratí, protože zatímco se u žen pravděpodobnost vstupu

c) In order to maintain the operation of the faculty, the employees of the study department will be allowed to enter the premises every Monday and Thursday and to stay only for

For instance, there are equations in one variable (let us call it x) where your aim is to find its solutions, i.e., all possible x (mostly real numbers or integers 1 ) such that if