• Nebyly nalezeny žádné výsledky

B Summary of publications

B.2 Other publications

B.2.1 Journals with impact factor

[134]Veit, A., Merta, M., Zapletal, J., and Lukáš, D. Efficient solution of time-domain boundary integral equations arising in sound-hard scattering. International Journal for Numer-ical Methods in Engineering 107, 5 (2016), 430–449.

We consider the efficient numerical solution of the three-dimensional wave equation with Neumann boundary conditions via time-domain boundary integral equations. A space-time Galerkin method withC-smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Fur-thermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I.

Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time.

[78] Kačmařík, M., Douša, J., and Zapletal, J. Comparison of GPS slant wet delays acquired by different techniques. Acta Geodynamica et Geomaterialia 9, 4 (2012), 427–433.

Slant wet delay (SWD) measurements from a ground-based GPS observation network pro-vide accurate, high-resolution moisture information for mesoscale analysis. In this study, we compared SWD simulated from a 9-km MM5 model in a prefrontal squall line event against actual GPS SWD observations by NOAA’s GPS network. We found that the model simulation did not capture abrupt moisture changes and small-scale variations observed in the nonisotropic component of slant wet delays associated with the squall line. This result suggests that SWD measurements can be very useful in improving model moisture analysis.

References

[1] Acker, A. An extremal problem involving current flow through distributed resistance.

SIAM Journal on Mathematical Analysis 12, 2 (1981), 169–172. 15

[2] Acker, A. On the geometric form of Bernoulli configurations. Mathematical Methods in the Applied Sciences 10, 1 (1988), 1–14. 1, 15

[3] Adams, R., and Fournier, J. Sobolev Spaces. Pure and Applied Mathematics. Elsevier Science, 2003. 5, 7

[4] Allaire, G. Conception optimale de structures: majeure sciences de l’ingénieur, simu-lation et modélisation. École polytechnique, 2003. 18

[5] Alt, H., and Caffarelli, L. Existence and regularity for a minimum problem with free boundary. Journal für die reine und angewandte Mathematik 325 (1981), 105–0144.

1, 15

[6] Andersson, L.-E., and Stewart, N. F. Introduction to the mathematics of subdivision surfaces. SIAM, 2010. 43

[7] Antonietti, P. F., Borzi, A., and Verani, M.Multigrid shape optimization governed by elliptic pdes. SIAM Journal on Control and Optimization 51, 2 (2013), 1417–1440. 114 [8] Arden, G. Approximation Properties of Subdivision Surfaces. PhD thesis, University of

Washington, 2001. 2, 58

[9] Bandara, K. Multiresolution surfaces in shape optimisation of shells and solids. PhD thesis, University of Cambridge, 2013. 2, 43, 114

[10] Bandara, K., Cirak, F., Of, G., Steinbach, O., and Zapletal, J. Boundary ele-ment based multiresolution shape optimisation in electrostatics.Journal of Computational Physics 297 (2015), 584–598. 2, 98, 109, 117

[11] Bandara, K., Rüberg, T., and Cirak, F. Shape optimisation with multiresolution subdivision surfaces and immersed finite elements. Computer Methods in Applied Mechan-ics and Engineering 300 (2016), 510–539. 2, 98, 114

[12] Bebendorf, M. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Lecture Notes in Computational Science and Engineering. Springer, 2008.

2, 65, 115

[13] Biermann, H., Levin, A., and Zorin, D. Piecewise smooth subdivision surfaces with normal control. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques (2000), ACM Press/Addison-Wesley Publishing Co., pp. 113–120.

58

[14] Böhm, W., Farin, G., and Kahmann, J. A survey of curve and surface methods in cagd. Computer Aided Geometric Design 1, 1 (1984), 1–60. 47

[15] Böhm, W., and Müller, A. On de Casteljau’s algorithm. Computer Aided Geometric Design 16, 7 (1999), 587–605. 43

[16] Botsch, M., Steinberg, S., Bischoff, S., and Kobbelt, L. Openmesh: A generic and efficient polygon mesh data structure. In OpenSG Symposium 2002 (2002). 102 [17] Braibant, V., and Fleury, C. Shape optimal design using B-splines. Computer

Methods in Applied Mechanics and Engineering 44, 3 (1984), 247–267. 97

[18] Bugeanu, M., and Harbrecht, H. A second order convergent trial method for a free boundary problem in three dimensions. Interfaces and Free Boundaries 17, 4 (2015), 517–537. 1

[19] Chaigne, B. Introduction to parametric shape optimization of electrical devices using Pro/Engineer and Polopt. Tech. rep., CASOPT, 2011. 110

[20] Chaikin, G. M. An algorithm for high-speed curve generation. Computer Graphics and Image Processing 3, 4 (1974), 346–349. 2, 49

[21] Chenais, D. On the existence of a solution in a domain identification problem. Journal of Mathematical Analysis and Applications 52, 2 (1975), 189–219. 9

[22] Cirak, F., Ortiz, M., and Schröder, P. Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering 47, 12 (2000), 2039–2072. 2, 114

[23] Cirak, F., Scott, M. J., Antonsson, E. K., Ortiz, M., and Schröder, P. Inte-grated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Computer-Aided Design 34 (2002), 2002. 2, 114

[24] Costabel, M. Boundary integral operators on lipschitz domains: elementary results.

SIAM Journal on Mathematical Analysis 19, 3 (1988), 613–626. 13

[25] Costabel, M., and Le Louër, F. Shape derivatives of boundary integral operators in electromagnetic scattering. part i: Shape differentiability of pseudo-homogeneous bound-ary integral operators. Integral Equations and Operator Theory 72, 4 (2012), 509–535. 16, 29

[26] Costabel, M., and Le Louër, F. Shape derivatives of boundary integral operators in electromagnetic scattering. part ii: Application to scattering by a homogeneous dielectric obstacle. Integral Equations and Operator Theory 73, 1 (2012), 17–48. 16, 29

[27] Cottrell, J. A., Hughes, T. J., and Bazilevs, Y. Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons, 2009. 114

[28] Crank, J. Free and Moving Boundary Problems. Oxford science publications. Clarendon Press, 1987. 15

[29] Cunha, M. T. F., Telles, J. C. F., and Ribeiro, F. L. B.Streaming SIMD extensions applied to boundary element codes.Advances in Engineering Software 39, 11 (2008), 888–

898. 3, 66

[30] Dambrine, M., and Kateb, D. On the ersatz material approximation in level-set methods. ESAIM: Control, Optimisation and Calculus of Variations 16 (7 2010), 618–

634. 36

[31] de Boor, C. Subroutine package for calculating with B-splines. Tech. rep., Los Alamos Scientific Lab, New Mexico, 1971. 45

[32] de Boor, C. A Practical Guide to Splines. Applied Mathematical Sciences. Springer New York, 2001. 45

[33] de Boor, C., Höllig, K., and Riemenschneider, S. Box Splines. Applied Mathe-matical Sciences. Springer New York, 2013. 48

[34] Delfour, C., and Zolésio, J. Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Second Edition. Advances in Design and Control. Society for Industrial and Applied Mathematics, 2011. 1, 10, 18, 29, 34, 35, 36

[35] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. Multiresolution analysis of arbitrary meshes. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (1995), ACM, pp. 173–182.

114

[36] Emmerich, M., Giannakoglou, K. C., and Naujoks, B. Single-and multiobjective evolutionary optimization assisted by gaussian random field metamodels. Evolutionary Computation, IEEE Transactions on 10, 4 (2006), 421–439. 110

[37] Eppler, K. Efficient shape optimization algorithms for elliptic boundary value problems byboundary element methods, 2007. habilitation thesis. 113

[38] Eppler, K., and Harbrecht, H. A regularized Newton method in electrical impedance tomography using shape hessian information. Control and Cybernetics 34, 1 (2005), 203.

15

[39] Eppler, K., and Harbrecht, H. Efficient treatment of stationary free boundary prob-lems. Applied numerical mathematics 56, 10 (2006), 1326–1339. 1, 15

[40] Eppler, K., and Harbrecht, H. Shape optimization for free boundary problems.

In Proceedings of the International Conference Systems Theory: Modelling, Analysis and Control. submitted (2009). 15, 29

[41] Eppler, K., and Harbrecht, H. Tracking Neumann data for stationary free boundary problems. SIAM J. Control Optim. 48, 5 (Nov. 2009), 2901–2916. 1, 15, 29, 113

[42] Eppler, K., and Harbrecht, H. Tracking Dirichlet data in L2 is an ill-posed problem.

Journal of optimization theory and applications 145, 1 (2010), 17–35. 1, 15

[43] Eppler, K., and Harbrecht, H. On a Kohn–Vogelius like formulation of free boundary problems. Computational Optimization and Applications 52, 1 (2012), 69–85. 1, 15 [44] Eppler, K., and Harbrecht, H. Shape optimization for free boundary problems –

analysis and numerics. In Constrained Optimization and Optimal Control for Partial Differential Equations, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, Eds., vol. 160 of International Series of Numerical Mathematics. Springer Basel, 2012, pp. 277–288. 15, 29

[45] Eppler, K., Harbrecht, H., and Mommer, M. S. A new fictitious domain method in shape optimization. Computational Optimization and Applications 40, 2 (2008), 281–298.

1

[46] Erichsen, S., and Sauter, S. A. Efficient automatic quadrature in 3-d Galerkin BEM.

Computer Methods in Applied Mechanics and Engineering 157, 3–4 (1998), 215–224. 66 [47] Fasano, A. Some free boundary problems with industrial applications. In Shape

Opti-mization and Free Boundaries, M. C. Delfour and G. Sabidussi, Eds. Springer Netherlands, Dordrecht, 1992, pp. 113–142. 1, 15

[48] Flucher, M. An asymptotic formula for the minimal capacity among sets of equal area.

Calculus of Variations and Partial Differential Equations 1, 1 (1993), 71–86. 15

[49] Flucher, M. Bernoulli’s free-boundary problem. In Variational Problems with Concen-tration, vol. 36 of Progress in Nonlinear Differential Equations and Their Applications.

Birkhäuser Basel, 1999, pp. 117–129. 1, 15

[50] Flucher, M., and Rumpf, M. Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. Journal für die reine und angewandte Mathematik 486 (1997), 165–204. 1, 15

[51] Grayson, M. A. The heat equation shrinks embedded plane curves to round points.

Journal of Differential Geometry 26, 2 (1987), 285–314. 98

[52] Greengard, L., and Rokhlin, V. A fast algorithm for particle simulations. Journal of Computational Physics 73, 2 (1987), 325–348. 2, 65

[53] Griewank, A., and Walther, A. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, second ed. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008. 1

[54] Hadamard, J. Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élas-tiques encastrées. Mémoires présentés par divers savants à l’Académie des sciences de l’Institut de France: Éxtrait. Imprimerie nationale, 1908. 1

[55] Haftka, R. T., and Grandhi, R. V. Structural shape optimization—a survey. Com-puter methods in applied mechanics and engineering 57, 1 (1986), 91–106. 97

[56] Hansen, N., and Ostermeier, A. Completely derandomized self-adaptation in evolu-tion strategies. Evolutionary computation 9, 2 (2001), 159–195. 110

[57] Harbrecht, H. A Newton method for Bernoulli’s free boundary problem in three di-mensions. Computing 82, 1 (Apr. 2008), 11–30. 1

[58] Harbrecht, H., Hohage, T., et al. Fast methods for three-dimensional inverse ob-stacle scattering problems. J. Integral Equations Appl 19, 3 (2007), 237–260. 99

[59] Harbrecht, H., and Mitrou, G. Improved trial methods for a class of generalized Bernoulli problems. Journal of Mathematical Analysis and Applications 420, 1 (2014), 177–194. 1

[60] Harbrecht, H., and Mitrou, G. Stabilization of the trial method for the Bernoulli problem in case of prescribed Dirichlet data.Mathematical Methods in the Applied Sciences 38, 13 (2015), 2850–2863. 1

[61] Haslinger, J., Ito, K., Kozubek, T., Kunisch, K., and Peichl, G. On the shape derivative for problems of Bernoulli type. Interfaces and Free Boundaries 11, 2 (2009), 317–330. 1, 15, 29

[62] Haslinger, J., Kozubek, T., Kunisch, K., and Peichl, G. Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type. Comput.

Optim. Appl. 26, 3 (Dec. 2003), 231–251. 1, 16, 18

[63] Haslinger, J., Kozubek, T., Kunisch, K., and Peichl, G. An embedding domain approach for a class of 2-d shape optimization problems: mathematical analysis. Journal of Mathematical Analysis and Applications 290, 2 (2004), 665–685. 1, 16

[64] Haslinger, J., Kozubek, T., Kunisch, K., and Peichl, G. Fictitious domain meth-ods in shape optimization with applications in free-boundary problems. In Numerical Mathematics and Advanced Applications, M. Feistauer, V. Dolejší, P. Knobloch, and K. Na-jzar, Eds. Springer Berlin Heidelberg, 2004, pp. 56–75. 1, 16

[65] Haslinger, J., and Mäkinen, R. A. E. Introduction to Shape Optimization: Theory, Approximation, and Computation. Advances in Design and Control. SIAM, Society for Industrial and Applied Mathematics, 2003. 1, 18, 113

[66] Hildebrand, F. Introduction to Numerical Analysis: Second Edition. Dover Books on Mathematics. Dover Publications, 2013. 69

[67] Hiptmair, R., and Paganini, A. Shape optimization by pursuing diffeomorphisms.

Computational Methods in Applied Mathematics 15, 3 (2015), 291–305. 2, 18

[68] Holzleitner, L. Hausdorff convergence of domains and their boundaries for shape optimal design. Control and Cybernetics 30, 1 (2001), 23–44. 19

[69] Iemma, U. On the use of a SIMD vector extension for the fast evaluation of boundary element method coefficients. Advances in Engineering Software 41, 3 (2010), 451–463. 3, 66

[70] Intel. Intel architecture instruction set extensions programming reference, 8 2015. 65 [71] Ito, K., Kunisch, K., and Li, Z. Level-set function approach to an inverse interface

problem. Inverse Problems 17, 5 (2001), 1225. 98

[72] Jeffers, J., and Reinders, J. Intel Xeon Phi Coprocessor High Performance Program-ming, 1 ed. Morgan Kaufmann, 2013. 79, 86

[73] Jeffers, J., and Reinders, J. High Performance Parallelism Pearls Volume One:

Multicore and Many-core Programming Approaches. Elsevier Science, 2014. 79, 86 [74] Jeffers, J., and Reinders, J. High Performance Parallelism Pearls Volume Two:

Multicore and Many-core Programming Approaches. Elsevier Science, 2015. 79, 84, 86 [75] Jeffers, J., Reinders, J., and Sodani, A. Intel Xeon Phi Processor High Performance

Programming: Knights Landing Edition. Elsevier Science, 2016. 86

[76] Johnson, S. G. The NLopt nonlinear-optimization package, 2011. 100, 103

[77] Kasumba, H., and Kunisch, K. On shape sensitivity analysis of the cost functional without shape sensitivity of the state variable. Control and Cybernetics 40 (2011), 989–

1017. 1

[78] Kačmařík, M., Douša, J., and Zapletal, J. Comparison of GPS slant wet delays acquired by different techniques.Acta Geodynamica et Geomaterialia 9, 4 (2012), 427–433.

120

[79] Kennedy, J.Particle swarm optimization. InEncyclopedia of machine learning. Springer, 2011, pp. 760–766. 110

[80] Kohn, R., and Vogelius, M. Determining conductivity by boundary measurements.

Communications on Pure and Applied Mathematics 37, 3 (1984), 289–298. 15

[81] Krautter, J., and Parizot, S. Systeme d’aide à la définition et à l’usinage des surfaces de carosserie. In La Commande Numérique, Ingénieurs de l’Automobile XLIV, Journal de la SIA (1971), P. Bézier, Ed., vol. Numéro spécial publié à l’occasion du salon de l’automobile Octobre 1971, Paris, pp. 581–586. 43

[82] Kretz, M. Efficient use of and many-core systems with vectorization and multi-threading. Master’s thesis, University of Heidelberg, 2009. 94, 115

[83] Kretz, M. Extending C++ for explicit data-parallel programming via SIMD vector types.

PhD thesis, Goethe University Frankfurt, 2015. 94, 115

[84] Kretz, M., and Lindenstruth, V. Vc: A C++ library for explicit vectorization.

Software: Practice and Experience 42, 11 (2012), 1409–1430. 3, 66, 94, 115

[85] Kufner, A., John, O., and Fučík, S. Function Spaces. Mechanics Series. Springer, 1977. 5

[86] Kufner, A., Pick, L., John, O., and Fučík, S. Function Spaces, vol. 1 ofDe Gruyter series in nonlinear analysis and applications. De Gruyter, 2012. 5, 6, 28

[87] Lacey, A. A., and Shillor, M. Electrochemical and electro-discharge machining with a threshold current. IMA journal of applied mathematics 39, 2 (1987), 121–142. 15 [88] Langer, U., and Steinbach, O. Boundary element tearing and interconnecting

meth-ods. Computing 71, 3 (2003), 205–228. 65

[89] Le Louër, F. Optimisation de forme d’Antennes lentilles intégrées aux ondes mil-limétriques. PhD thesis, Université de Rennes 1, 2009. 16

[90] Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. Maps:

Multiresolution adaptive parameterization of surfaces. In Proceedings of the 25th An-nual Conference on Computer Graphics and Interactive Techniques(New York, NY, USA, 1998), SIGGRAPH ’98, ACM, pp. 95–104. 114

[91] Liu, D. C., and Nocedal, J. On the limited memory bfgs method for large scale optimization. Mathematical programming 45, 1-3 (1989), 503–528. 100

[92] Loop, C.Smooth subdivision surfaces based on triangles. Master’s thesis, The University of Utah, Aug. 1987. 2, 43, 54, 55, 58

[93] López-Portugués, M., López-Fernández, J. A., Díaz-Gracia, N., Ayestarán, R., and Ranilla, J. Aircraft noise scattering prediction using different accelerator architectures. The Journal of Supercomputing 70, 2 (2014), 612–622. 3, 66

[94] Lukáš, D., Kovář, P., Kovářová, T., and Merta, M. A parallel fast boundary element method using cyclic graph decompositions. Numerical Algorithms 70, 4 (2015), 807–824. 115

[95] Lukáš, D., and Chalmovianský, P. A sequential coupling of optimal topology and multilevel shape design applied to two-dimensional nonlinear magnetostatics. Computing and Visualization in Science 10, 3 (2007), 135–144. 2, 98

[96] McLean, W. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000. 7, 13, 38, 109

[97] Merta, M., and Zapletal, J. BEM4I. IT4Innovations, 2013. 3, 64, 115

[98] Merta, M., and Zapletal, J. Acceleration of boundary element method by explicit vectorization. Advances in Engineering Software 86 (2015), 70–79. 3, 64, 66, 94, 96, 115, 118

[99] Merta, M., and Zapletal, J. A parallel library for boundary element discretization of engineering problems. Mathematics and Computers in Simulation (in press). 64, 115, 118

[100] Merta, M., Zapletal, J., Brzobohatý, T., Markopoulos, A., Říha, L., Čermák, M., Hapla, V., Horák, D., Pospíšil, L., and Vašatová, A. Numerical libraries solv-ing large-scale problems developed at IT4Innovations Research Programme Supercomput-ing for Industry. Perspectives in Science 7 (2016), 140–150. 1st Czech-China Scientific Conference 2015. 64, 115, 119

[101] Merta, M., Zapletal, J., and Jaros, J. Many core acceleration of the boundary element method. In High Performance Computing in Science and Engineering: Second International Conference, HPCSE 2015, Soláň, Czech Republic, May 25-28, 2015, Revised Selected Papers, T. Kozubek, R. Blaheta, J. Šístek, M. Rozložník, and M. Čermák, Eds.

Springer International Publishing, 2016, pp. 116–125. 3, 64, 79, 115, 119

[102] Meyer, M., Desbrun, M., Schröder, P., and Barr, A. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, H.-C. Hege and K. Polthier, Eds., Mathematics and Visualization. Springer Berlin Heidel-berg, 2003, pp. 35–57. 100

[103] Nedelec, J.-C. Curved finite element methods for the solution of singular integral equa-tions on surfaces in R3. Computer Methods in Applied Mechanics and Engineering 8, 1 (1976), 61–80. 113

[104] Nedelec, J.-C. Numerical approximation for some singular integral equations. InThe use of finite element method and finite difference method in geophysics : proceedings of a summer school held in May and June at castle Liblice, Czechoslovakia (1978). 113 [105] Nečas, J., Simader, C., Nečasová, Š., Tronel, G., and Kufner, A.Direct Methods

in the Theory of Elliptic Equations. Springer Monographs in Mathematics. Springer, 2011.

5, 27

[106] Nocedal, J. Updating quasi-Newton matrices with limited storage. Mathematics of computation 35, 151 (1980), 773–782. 100

[107] Of, G. Fast multipole methods and applications. In Boundary Element Analysis, M. Schanz and O. Steinbach, Eds., vol. 29 of Lecture Notes in Applied and Computa-tional Mechanics. Springer Berlin Heidelberg, 2007, pp. 135–160. 2, 65

[108] Of, G., and Steinbach, O. The all-floating boundary element tearing and intercon-necting method. Journal of Numerical Mathematics 17, 4 (2009), 277–298. 65

[109] OpenMP Architecture Review Board. OpenMP application program interface, 7 2013. 3, 71

[110] Paganini, A.Numerical shape optimization with finite elements. PhD thesis, ETH-Zürich, 2016. Dissertation, ETH-Zürich, 2016, No. 23212. 2

[111] Parsopoulos, K. E., and Vrahatis, M. N. Unified particle swarm optimization for solving constrained engineering optimization problems. In Advances in natural computa-tion. Springer, 2005, pp. 582–591. 110

[112] Pechstein, C. Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems. Lecture Notes in Computational Science and Engineering. Springer Berlin Heidelberg, 2012. 65

[113] Peters, J., and Reif, U. Subdivision surfaces. Springer, 2008. 43

[114] Pironneau, O. Optimal Shape Design for Elliptic Systems. Springer series in computa-tional physics. Springer-Verlag, 1984. 1, 9, 18, 19, 29, 113

[115] Potthast, R. Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 2 (1994), 431. 16, 29

[116] Potthast, R. Fréchet differentiability of the solution to the acoustic neumann scattering problem with respect to the domain. Journal of Inverse and Ill Posed Problems 4 (1996), 67–84. 16, 29

[117] Prautzsch, H., Boehm, W., and Paluszny, M. Bézier and B-spline techniques.

Springer Science & Business Media, 2013. 43, 45

[118] Riesenfeld, R. On Chaikin’s algorithm. Computer Graphics and Image Processing 4, 3 (1975), 304–310. 49

[119] Rjasanow, S., and Steinbach, O. The Fast Solution of Boundary Integral Equations.

Mathematical and Analytical Techniques with Applications to Engineering. Springer, 2007.

2, 3, 42, 65, 66, 90, 91, 92, 109, 115

[120] Rokhlin, V. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics 60, 2 (1985), 187–207. 2, 65

[121] Sauter, S., and Schwab, C. Boundary Element Methods. Springer Series in Compu-tational Mathematics. Springer, 2010. 3, 12, 13, 38, 66, 67, 68, 109

[122] Schmidt, S. Efficient Large Scale Aerodynamic Design Based on Shape Calculus. PhD thesis, University of Trier, 2010. 34

[123] Schröder, P., Zorin, D., DeRose, T., Forsey, D., Kobbelt, L., Lounsbery, M., and Peters, J. Subdivision for modeling and animation. ACM SIGGRAPH Course Notes 12 (1998). 2, 43, 46, 49, 50, 58

[124] Scott, M. A., Simpson, R. N., Evans, J. A., Lipton, S., Bordas, S. P., Hughes, T. J., and Sederberg, T. W. Isogeometric boundary element analysis using unstruc-tured T-splines. Computer Methods in Applied Mechanics and Engineering 254 (2013), 197–221. 114

[125] Sokołowski, J., and Zolésio, J.Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer series in computational mathematics. Springer-Verlag, 1992. 1, 25, 29 [126] Stam, J. Evaluation of loop subdivision surfaces. In Computer Graphics Proceedings

ACM SIGGRAPH (1998). 2, 56

[127] Steinbach, O. Galerkin– und Kollokations–Diskretisierungen für Randintegralgleichun-gen in 3D. Tech. rep., Technische Universität Graz, 2004. 92, 93, 94

[128] Steinbach, O. Numerical Approximation Methods for Elliptic Boundary Value Problems:

Finite and Boundary Elements. Texts in applied mathematics. Springer, 2008. 38, 41, 42, 62, 63, 64, 94

[129] Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM Journal on Optimization 12, 2 (2002), 555–573.

100

[130] Tiihonen, T. Shape optimization and trial methods for free boundary problems. RAIRO-Modélisation mathématique et analyse numérique 31, 7 (1997), 805–825. 1, 15

[131] Tiihonen, T., and Järvinen, J. On fixed point (trial) methods for free boundary problems. InFree Boundary Problems in Continuum Mechanics. Springer, 1992, pp. 339–

350. 1

[132] Torczon, V. J. Multi-directional search: a direct search algorithm for parallel machines.

PhD thesis, Rice University, 1989. 110

[133] Čermák, M., Merta, M., and Zapletal, J. A novel boundary element library with applications. In Proceedings of ICNAAM 2014 (2015), T. Simos and C. Tsitouras, Eds., vol. 1648 of AIP Conference Proceedings, pp. 1–4. 64, 115, 119

[134] Veit, A., Merta, M., Zapletal, J., and Lukáš, D. Efficient solution of time-domain boundary integral equations arising in sound-hard scattering. International Journal for Numerical Methods in Engineering 107, 5 (2016), 430–449. 64, 115, 120

[135] Warren, J. Subdivision methods for geometric design. Tech. rep., Rice University, 1995.

52

[136] Warren, J., and Weimer, H. Subdivision Methods for Geometric Design: A Construc-tive Approach. The Morgan Kaufmann Series in Computer Graphics. Elsevier Science, 2001. 47, 50

[137] Zapletal, J. The boundary element method for the Helmholtz equation in 3D. Master’s thesis, VŠB-TU Ostrava, 2011. 13, 66

[138] Zapletal, J., and Bouchala, J. Effective semi-analytic integration for hypersingular Galerkin boundary integral equations for the Helmholtz equation in 3D. Applications of Mathematics 59, 5 (2014), 527–542. 66, 92, 93, 118

[139] Zapletal, J., Merta, M., and Malý, L. Boundary element quadrature schemes for multi- and many-core architectures.Computers & Mathematics with Applications (sumbit-ted). 70, 86, 117

[140] Zapletal, J., Merta, M., and Čermák, M. BEM4I applied to shape optimization problems. AIP Conference Proceedings 1738, 1 (2016), 1–5. 64, 98, 115, 119

[141] Zorin, D. Stationary Subdivision and Multiresolution Surface Representations. PhD thesis, California Institute of Technology, 1998. 2, 43, 49, 58

[142] Zorin, D. Subdivision on arbitrary meshes: algorithms and theory. In Mathematics and Computation in Imaging Science and Information Processing, S. Goh, A. Ron, and Z. Shen, Eds., Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore. World Scientific Publishing Company Pte Limited, 2007. 2, 43, 49, 53, 56